

EARTHQUAKE ANALYSIS EXAMPLE

The earthquake analysis capabilities of SAP2000 are demonstrated using a railroad bridge bent designed in accordance with the AREMA Manual for Railway Engineering.

Response spectrum analysis

Response spectrum analysis is performed to verify that the column design is adequate.

Input steps

1. Define mass

- a. Select menu item: *Define > Mass Source*
- b. Select mass definition option: From Loads
- c. Add load case: *Dead (with multiplier of 1)*

Note: The dead load is automatically divided by gravity.

- 2. Define Response Spectrum Function
 - a. Select menu item: *Define > Functions > Response Spectrum*
 - b. Choose function type: Spectrum from File
 - c. Click: Add New Function
 - d. Type function name: AREMA
 - e. Select option: Period vs. value
 - f. Browse to and select "spectra.txt" file
 - g. Click: Display graph

- 3. Define Modal Analysis Case
 - a. Select menu item: *Define > Analysis Cases*
 - b. Select case: *MODAL*
 - c. Click: *Modify/Show Case*
 - d. Enter maximum number of modes = 2
- 4. Define Response Spectra Analysis Case
 - a. Select menu item: Define > Analysis Cases
 - b. Click: Add New Case
 - c. Type case name = AREMA
 - d. Select analysis case type: Response Spectrum
 - e. Select loads applied from AREMA function
 - f. Enter Scale Factor = 32.2 (response values in G's)
 - g. Click: Add

- 5. Define Load Combination
 - a. Select menu item: *Define > Combinations*
 - b. Click: Add New Combo
 - c. Select DEAD and AREMA cases
 - d. Click: Add

Note: Response spectrum will automatically give +/- values

- 6. Perform Response Spectrum Analysis
 - a. Select menu item: Analyze > Run Analysis
 - b. Click: *Run Now*

Verify results

- 1. Display results graphically
 - a. Select menu item: *Display > Deformed Shape*

2.	Display	results	in	tabular	form
----	---------	---------	----	---------	------

- a. Select menu item: *Display > Show Tables*
- b. Select output to verify
- c. Select analysis cases to verify

	Joint Text	OutputCase	CaseType Text	StepType Text	U1 Kin	U2 Kin	U3 Kin	B1 Kin-ft	R2 Kin-ft	ĸ
+	101	DEAD	LinStatic	TEAL	-10.316	0	834.134	0	-81,1603	
1	101	AREMA	LinRespSpec	Max	480.988	0	520.814	0	5099.7767	
T	201	DEAD	LinStatic		2.817	0	684.529	0	27.9762	
	201	AREMA	LinRespSpec	Max	532.483	0	104.167	0	5526.7034	
	301	DEAD	LinStatic		2.111	0	705.054	0	21.9008	
	301	AREMA	LinRespSpec	Max	532.176	0	99.318	0	5523.5348	
	401	DEAD	LinStatic		5.388	0	741.227	0	49.0556	
	401	AREMA	LinRespSpec	Max	481.254	0	508.889	0	5100.1768	
cor	d: 📕 🖣	1 🕨 🗎	of 8							Done

3. Verification computations

a. Verify: dead load reaction = total weight

Weight =
$$0.15 \left(\frac{\pi (5)^2}{4} \times 14.7 \times 4 + 6.5 \times 6 \times 64 \right) + 2418 = 2965.6 \ kips$$

Dead load reaction = $834.1 + 684.5 + 705.1 + 741.2 = 2964.9 \ kips$

b. Verify: total mass = total dead load / gravity

Mass = 92.1 (Export joint masses to Excel and sum) Weight / Gravity = 2964.9 / 32.2 = 92.1

c. Verify: modal participating mass ratio > 90%

Ratio = 97% for mode 1

- Check column design
 - 1. Verify that column reinforcement is defined
 - a. Select menu item: *Define > Frame Sections*
 - b. Select property: COL
 - c. Click: *Modify/Show Property*
 - d. Click: Concrete Reinforcement
 - 2. Analyze column
 - a. Select menu item: Options > Preferences > Concrete Frame Design
 - b. Select design code: AASHTO
 - c. Select menu item: *Design > Concrete Frame Design > Select Design Combos*
 - d. Remove all generated combos and add COMB1
 - e. Select column members to design

