

BENT DESIGN

Bob Matthews

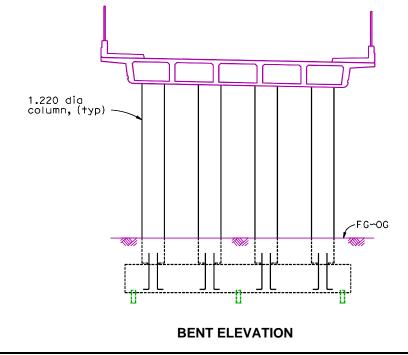
			F
	ENT DESIGN	ORIGINATOR Bob Matthews	date 10/19/2007
JOB No.	CALCULATION No.	REVIEWER	DATE

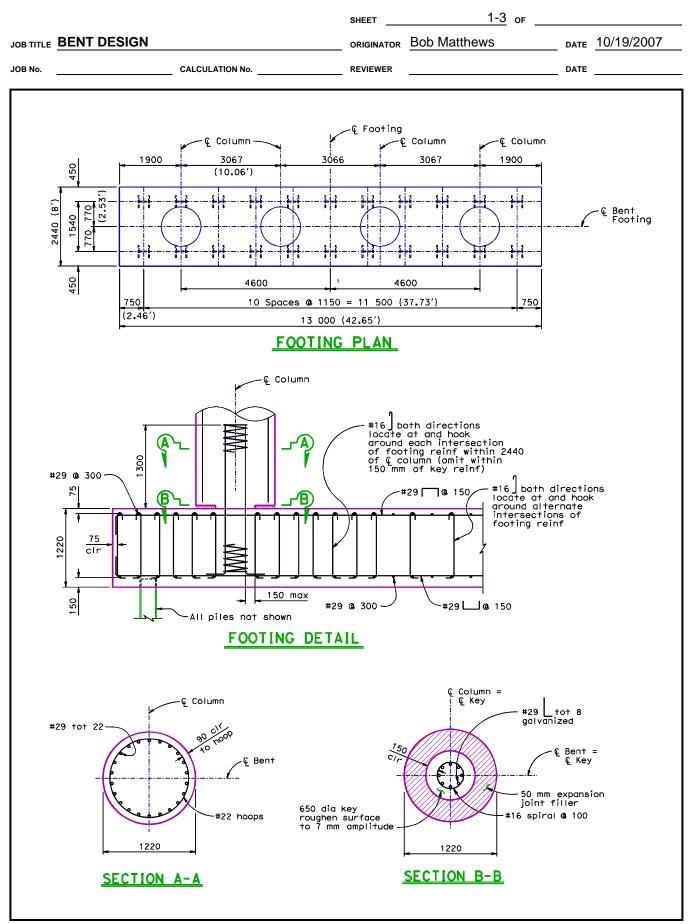
TAE	TABLE OF CONTENTS						
	SECTION	DESCRIPTION					
	1.0	CONFIGURATION					
	2.0	LOADS					
	3.0	GLOBAL ANALYSIS					
	4.0	LOCAL ANALYSIS					
	5.0	DESIGN					
	6.0	DETAILING					

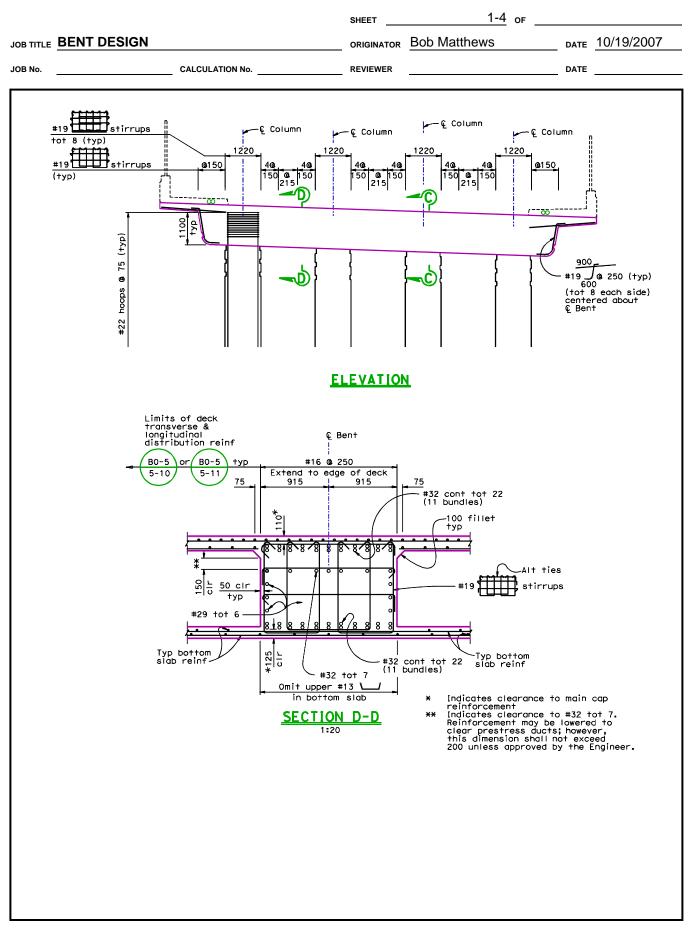
Note: These course notes were prepared based on AASHTO LRFD Bridge Design Specifications, 3rd edition, with 2005 and 2006 Interim Revisions, as amended by Caltrans, v3.06.01. Reference to Caltrans Seismic Design Criteria is for version 1.4.

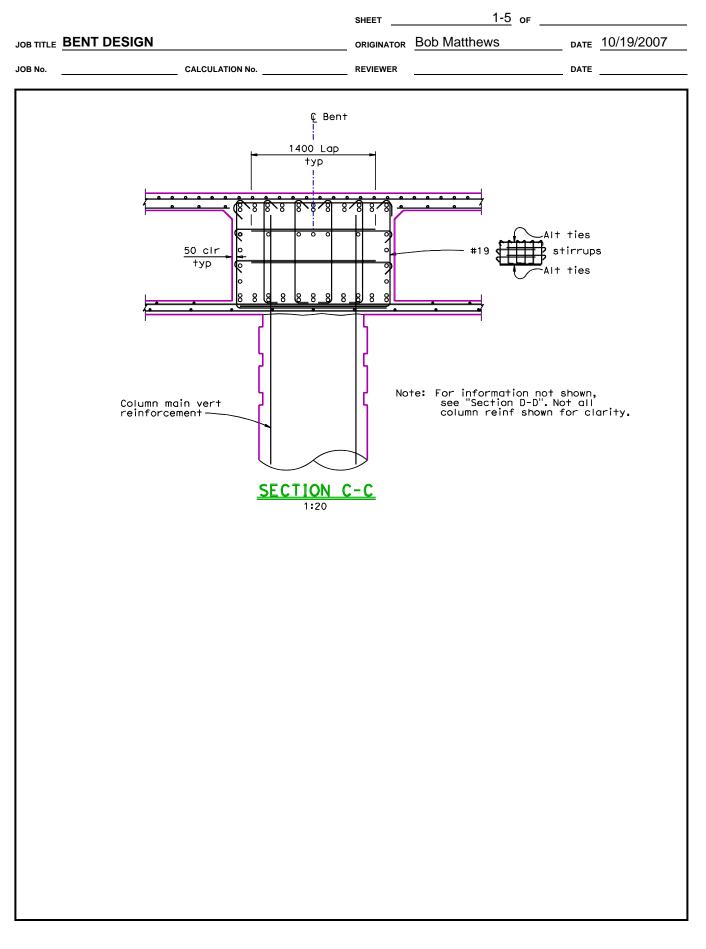
Requirements based on Caltrans Amendments to AASHTO LRFD and Caltrans Seismic Design Criteria are highlighted for clarification.

	SHEET		1-1 of	
JOB TITLE BENT DESIGN	ORIGINATOR	Bob Matth	ews	date 10/19/2007
JOB No CALCULATION No	REVIEWER			DATE
SECTION 1.0 BENT CONFIGURATION				
Note: The bridge configuration was taken from	Massachusetts	Avenue O	vercrossing of	Interstate 215
in San Bernardino California.				
1.1 Bridge configuration and bent locations				
The bents were placed as shown below to spar	n over railroad tr	acks and r	oadway.	
	ong ClMassachusetts Ave ('			
BB - 15.0 <u>28.8</u> (94.49')	28.0	30.4		23.8 EB
	6		Approx 0G-	
	58 - Ll_ 19 - 11 Bent 4	I-215 NB		Abut 6
Abur 1 Den 2 (F) Tr (E) Bent 3 (E) Datum Elev 345.00 , 1 1 21+00			Bent 5	-Existing 1.06 m x 1.58 m RCB Protect in place
SPAN LENGTH 1 15.0 m (49.21')	ABU	<u>JT/BENT</u> 1	*HEIGHT 9.25 m (30.3	
2 28.8 m (94.49')		2	9.78 m (32.0	
3 28.0 m (91.86')		3	10.98 m (36.	
4 30.4 m (99.74') 5 23.8 m (78.08')		4 5	10.73 m (35. 9.76 m (32.0	
<u> </u>		6	4.74 m (15.	
*Height is profile grade elevation minus to	op of footing elev	vation.		
	 - ောင့် Mc	issachusetts	Ave	
	ا 14.850 (48.72′)		
	3.6 3.6		0.345	
-	1.5 Shid 5hi			
Chain ∣ink Railing Type 7, (†yp) ─_				
Type 7, (†yp)	/ Pro	file		
Type 26 (Mod)	+2%		H	
	/) P/PS	
	E C	Bo	rder	
	<u>1370 mr</u> (4.500')			
SUPE	ERSTRUCTURE		I	


	Sheet 0f	
JOB TITLE BENT DESIGN	ORIGINATOR Bob Matthews	date <u>10/19/2007</u>
JOB No CALCULATION No	REVIEWER	DATE


1.2 Configure bent


The following considerations are used to configure the bent.


ITEM	CONSIDERATIONS
Bent cap size	 Match superstructure depth except with outriggers for better aesthetics and constructability. Depth to develop column reinforcement and/or width to accommodate column hooks. Width as needed for rebar placement, especially at column interface. Size as needed to carry loads. Minimum of 2' wider than column for seismic/joint shear reinforcement (SDC 7.4.2.1)
Column size and location	 Avoid interference with superstructure prestressing tendons Number and size as needed to carry loads Depth less than superstructure for seismic (SDC 7.6) Avoid knee joints at exterior columns for seismic (SDC 7.4.3) Limit column slenderness for seismic (SDC 4.2) Aesthetic considerations
Foundation type and location	 Geotechnical recommendations (spread footing, pile footing, etc.) Seismic performance requirements (e.g. repairable damage) Footing under roadway structural section (~2') Avoid utilities (e.g. drain inlets, irrigation lines, etc.) Lower footing as needed to balance stiffness for seismic (SDC 7.1)

The bent configuration is shown below. The columns were pinned at the base to reduce the foundation loads. 625 kN (70 ton) HP360x132 (HP14x89) piles were selected based on geotechnical recommendations. Three columns would be more typical for this section, but four were required to satisfy seismic requirements.

			SHEET	2-1 ог	
ITLE BEN	T DESIGN		ORIGINATOR BO	ob Matthews	date <u>10/31/2007</u>
No	CALCULA	TION No	REVIEWER		DATE
SECTIO	N 2.0 BENT LOADS				
Loads w	rill be determined at Be	ent 5.			
<u>2.1 PER</u>	MANENT LOADS (LR	FD 3.5 & Caltrans	Amendment 3.4	.1)	
then <u>2.1.1 De</u> • The dete	rans considers second n different load factors ead load constant (DC) longitudinal load at the ermined using a global NBOX was used to det	from AASHTO LR	EFD. Superstructure de for moment distr shown below.	ead load (constant) s ibution effects with t Bending	should be
	Cure e retru eture	Force (kips) -20.65	Force (kips)	Moment (k-ft) -568.50	
	Superstructure Barrier	-20.65 -5.08	1080.66 266.42	-308.50	
	Total	-25.73	1347.08	-708.42	
	Total per girder	-4.3	225	-118	
Colui Footi Soil d	-	x 27.5 x 4 x 0.15 15 = 204.7 kips = 0.24 ksf 8 – 12.57 x 4] x 0.3	= 207.3 kips	S	
<u>2.1.2 De</u>	ead load varying (DW):				
• The	dead load varying incl	udes future AC ov	erlay.		
	longitudinal load at the rmined using a global				

Load	Longitudinal	Vertical	Bending
	Force (kips)	Force (kips)	Moment (k-ft)
AC	-3.21	167.99	-88.23
Total per girder	-0.5	28	-14.7

		SHEET	2-2 OF		
JOB TITLE BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/31/2007
JOB No	CALCULATION No.	REVIEWER		DATE	

2.1.3 Secondary prestress forces (PS): (Caltrans Amendment 3.12.7)

• The longitudinal load at the bent due to secondary prestress force should be determined using a global model to account for moment distribution effects with the superstructure. <u>CONBOX</u> was used to determine the forces shown below.

Load	Longitudinal Force (kips)	Vertical Force (kips)	Bending Moment (k-ft)	
Prestress	77.43	-20.58	2131.28	
Total per girder	12.9	-3.4	355	

2.1.4 Creep (CR) and Shrinkage (SH): (LRFD 3.12.4, 3.12.5)

- LRFD 5.9.5.3 provides approximate and refined methods to determine the time-dependent losses in the post-tensioning reinforcement.
- The effects of these losses are included in the CONBOX prestress (PS) force at the bent as shown in section 2.1.3 above. This was confirmed with the software developer.
- Shrinkage effects in the plane of the bent will be ignored since the bent is not that wide.

		SHEET	2-3 OF		
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	DATE	10/31/2007
JOB No.	CALCULATION No.	REVIEWER		DATE	
2.2	2 Live Load (LRFD 3.6)				
•	Caltrans Amendments include the Permit Vehic and fatigue load (3.4.1 & 3.6.1.4). These provis determine the live load reactions on the bent.				
•	Determining the exact live load distribution on a variations and modeling constraints.	bent is im	practical due to the load p	lacem	ient
•	Live loading may be idealized based on typical Refer to Caltrans Bridge Design Practice section			ion pr	actice.
	Assumptions:				
	 Live loads for each lane are idealized as two Caltrans Bridge Design Practice section 2). T truck load reaction and will not be modeled set 	he uniform			
	2. The concentrated loads are located within a the lane or 1' from the edge of an overhang b			om th	e edge of
	3. At least four load cases need to be considered	ed.			
	 a. HL-93 max axial with associated long b. HL-93 max longitudinal moment with c. Permit max axial with associated long d. Permit max longitudinal moment with 	associated	d axial oment		

4. Additional HL-93 cases may need to be considered for multi-lane bridges using the Multiple Presence Factor from LRFD 3.6.1.1.2. You need to consider which load will give you the maximum positive and negative moments and shears in the bent cap, critical column axial-moment interaction loading and maximum load on the foundation.

Number of	Multiple
loaded lanes	presence factor
1	1.20 (1.0 for permit)
2	1.00
3	0.85
>3	0.65

			SHEET		2-4 оғ		
JOB TITLE	BENT DESIGN		ORIGINATOR	Bob Matth	ews	DATE	10/31/2007
JOB No.	CALCULATION No)	REVIEWER			DATE	
	Effective live load lanes:						
	The bridge is striped for two lane the future for additional lanes.	s, but there is a	possibility	that it coul	d be modified c	or resti	riped in
	This bridge includes (2) 3.6 m la commentary to 3.6.1.3.1 sugges can mount them. This is consist	ts including the s	sidewalks i				f vehicles
	Width of potential driving surface = 14.16 m (46.46') Number of effective lanes = 46.46 / 12 = 3.87 consider up to 3 lanes on the bridge.						
	Moving live load cases:						
		12'		12′	12′	— = 	
	CASE 1: (1) HL93 MPF = 1.2 Max service +M in bent cap	HL93 3' 6' 1	3'		-		
	CASE 2: (2) HL93 MPF = 1.0 Max service -M in bent cap	HL93		93 5′ v 4′			
	CASE 3: (3) HL93 MPF = 0.85 Max foundation load	HL93 3' 6' 1	3′ 3′ V	_93 6' v 3'	HL93 3' 6'	3'	
	CASE 4: (2) P15 MPF = 1.0 Max strength loads	P15	P 2' 2'	15 ₆ ′ v 4′			
	For the purposes of this example case 4 maximum axial.), analysis will or	nly be perf	ormed for c	ase 2 maximur	n axia	l and

• The lane reactions at the bent due to the superstructure live load should be determined using a global model to account for moment distribution effects with the superstructure. <u>CONBOX</u> was used to determine the forces shown below.

CASE	HORIZONTAL	VERTICAL	MOMENT
	(Kips/lane)	(Kips/lane)	(k-ft/lane)
HL93 max axial	-0.92	99.09	-25.34
HL93 max moment	-13.07	68.04	-359.76
P15 max axial	-5.41	290.67	-148.92
P15 max moment	-27.56	158.04	-759.05

		SHEET	2-5 ог		
JOB TITLE BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/31/2007
JOB No.	CALCULATION No.	REVIEWER		DATE	

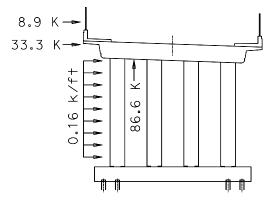
The horizontal and moment loads will be applied at each girder. The wheel loads will be modeled as a moving load case.

MOVING	DESCRIPTION	HORIZONTAL	VERTICAL	MOMENT
LOAD CASE		(Kips/girder)	(Kips/wheel)	(k-ft/girder)
2 max axial	(2) HL93 max axial	-0.92 x 2 / 6 =	99.09 / 2 =	-25.34 x 2 / 6 =
	MPF = 1.0	-0.3	49.5	-8.4
4 max axial	(2) P15 max axial	-5.41 x 2 / 6 =	290.67 / 2 =	-148.92 x 2 / 6 =
	MPF = 1.0	-1.8	145.3	-49.6

		SHEET	2-6 ог	
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	date <u>10/31/2007</u>
JOB No.	CALCULATION No.	REVIEWER		DATE
<u>2.</u> ;	<u>3 Centrifugal Forces</u> (LRFD 3.6.3)			
•	Centrifugal force is a function of the highway de lanes. The force is applied 6' above the roadwa			
	Radial force = C x (axle weights of the design tru	ick or tand	um)	
	$C = f v^2 / (gR) = 1.33 x (95)^2 / (32.2 x 475.7) = 0.$	79		
	f = 4/3 for load combo other than fatigue v = highway design speed (ft/sec) = 65 r g = gravity (32.2 ft/sec ²) R = radius of curvature of traffic lane (ft)	nph = 95 fi		
	Consider 2 lanes, MPF = 1.0 Radial force = 0.79 x 2 (32 + 32 + 8) = 1	14 kips		
	Since the bridge curvature ends between bents 2 considered at bent 5.	2 and 3, th	ere will be no centrifug	al forces
<u>2.</u>	4 Braking Force (LRFD 3.6.4)			
	This force is the greater of:			
	 25% of the design truck or design tandem or 5% of the truck/tandem plus lane load. 	,		
	Apply the load 6' above the roadway. Two lanes will be considered for braking load. M	1PF = 1.0		
	25% of truck/tandem = $0.25 \times 2 (32 + 32 + 8) = 3$ 5% of truck/tandem plus lane load = $0.05 \times (144)$		x 413.4) = 34 kips	
	• This load should be distributed to the substru- relative stiffness of the members and momen are all fixed at the bridge soffit. The load dis	nt distribut	on. For simplicity, ass	
	Distribution factor = $(27.5)^{-3} / [(27.6)^{-3} + (31.5$) ⁻³ + (27.5) ⁻³] = 0.29	

					HEET		
	ENT DESIGN			0	riginator <u>Bob M</u>	latthews	date 10/31/200
o			ATION No.				DATE
<u>2.5 W</u>	/ind Load (LRFI	D 3.8)					
<u>а</u> т,	ables are availa	oblo for w	ind proceure ba	and on b	and wind veloci	ity of 100 mph	
• 10	ables are availe					ity of 100 mpn.	
	Table 3.8.1.2.1-1 100 mph.	Base Pres	sures, P _B Corresp	onding to V	V _B =		
	SUPERSTRU	JCTURE	WINDWARD	LEEW	ARD		
	COMPON		LOAD, ksf	LOAD			
	Trusses, Colur	mns, and	0.050	0.0	25		
	Arches						
	,		0.050	NA	A		
	Arches Beams Large Flat Sur	Base Wind	0.040 d Pressures, P _B , fo	NA	A		
	Arches Beams Large Flat Sur Table 3.8.1.2.2-1	l Base Wind oh. T	0.040 d Pressures, P _B , fo Trusses,	NA or Various	A Angles of Attack		
	Arches Beams Large Flat Sur Table 3.8.1.2.2-1	l Base Wind oh. T	0.040 d Pressures, P_B , fo frusses, and Arches	NA or Various	A Angles of Attack Girders		
	Arches Beams Large Flat Sur Table 3.8.1.2.2-1 and $V_B = 100$ mp	l Base Wind oh. T Columi	0.040 d Pressures, P _B , fo Trusses,	NA or Various . (A Angles of Attack		
	Arches Beams Large Flat Sur Table 3.8.1.2.2-1 and $V_B = 100$ mp Skew Angle	Base Wind bh. T Columr Lateral	0.040 d Pressures, P_B , for frusses, as and Arches Longitudinal	NA or Various (Lateral	A Angles of Attack Girders Longitudinal		
	ArchesBeamsLarge Flat SurTable 3.8.1.2.2-1and $V_B = 100$ mpSkew Angleof Wind	l Base Wind ph. T Columr Lateral Load	0.040 d Pressures, P _B , fo Trusses, as and Arches Longitudinal Load	Various . or Various . (Lateral Load	A Angles of Attack Girders Longitudinal Load		
	ArchesBeamsLarge Flat SurTable 3.8.1.2.2-1and $V_B = 100$ mpSkew Angleof WindDegrees	l Base Wind oh. Columi Lateral Load ksf	0.040 d Pressures, P _B , fo Frusses, ns and Arches Longitudinal Load ksf	Various, or Various, (Lateral Load ksf	A Angles of Attack Girders Longitudinal Load ksf		
	ArchesBeamsLarge Flat SurTable 3.8.1.2.2-1and $V_B = 100$ mpSkew Angle of WindDegrees01530	l Base Wind oh. Columi Lateral Load ksf 0.075	0.040 d Pressures, P _B , fo Trusses, as and Arches Longitudinal Load ksf 0.000 0.012 0.028	Various r Various Lateral Load ksf 0.050 0.044 0.041	A Angles of Attack Girders Longitudinal Load ksf 0.000 0.006 0.012		
	ArchesBeamsLarge Flat SurTable 3.8.1.2.2-1and $V_B = 100$ mpSkew Angleof WindDegrees015	Base Wind bh. Columr Lateral Load ksf 0.075 0.070	0.040 d Pressures, P _B , fo russes, as and Arches Longitudinal Load ksf 0.000 0.012	Various or Various Lateral Load ksf 0.050 0.044	A Angles of Attack Girders Longitudinal Load ksf 0.000 0.006		

- This bridge is approximately 30' high and local wind velocities are known to be less than 100 mph. Therefore, wind load for this bridge will use the default wind pressures.
- Wind direction for design shall be that which produces the extreme force effect on the component. Assume that wind acting normal to the bridge will produce the extreme force effect.


		SHEET	2-8 OF			
JOB TITLE BENT DES	SIGN	ORIGINATOR BC	b Matthews	date 10/31/2007		
JOB No.	CALCULATION No.	REVIEWER		DATE		
Wind on supe	rstructure = 50 psf x 7.48 = 374 lk	o/ft > 300 lb/ft mini	mum			
Wind on substructure = 40 psf Wind on vehicles = 100 lb/ft applied 6' above deck						
	pressure = 20 psf x deck area app		arter deck width (S	strength III and		

Service IV combinations only)

Transverse wind load on structure = $0.374 \times (99.74 + 78.08) / 2 = 33.3$ kips applied 3.74' above soffit And .04 x 4 = 0.16 kips/ft applied uniformly to column

Transverse wind load on vehicles = $0.100 \times (99.74 + 78.08) / 2 = 8.9$ kips applied 6' above deck

Vertical wind load = $0.02 \times 48.72 \times (99.74 + 78.08) / 2 = 86.6$ kips applied 12.2' from edge of deck

Wind load on bent

			SHEET	<u> </u>		
	BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/31/2007
JOB No.		CALCULATION No.	REVIEWER		DATE	

2.6 Temperature (LRFD 3.12 & Caltrans Amendment 3.4.1 & 3.12)

• AASHTO allows temperature extremes to be determined using a table shown below (Procedure A) or maps (Procedure B); however, Caltrans only allows use of Procedure A.

Table 3.12.2.1.1-1 Procedure A Temperature Ranges.

CLIMATE	STEEL OR ALUMINUM	CONCRETE	WOOD
Moderate	0° to 120°F	10° to 80°F	10° to 75°F
Cold	-30° to 120°F	0° to 80°F	0° to $75^{\circ}F$

Concrete in moderate climate has Tmin = 10° F and Tmax = 80° F

• Temperature range for force effects formula given in Caltrans amendments

 $\Delta = \alpha L(T - T_{BaseConstr})$

• There is no guidance given by AASHTO or Caltrans in assuming the base construction temperature. It makes sense that the base construction temperature is close to the air temperature that the structure is built at, however, this could vary from 50° F to 100° F in the San Bernardino area. A good mean temperature would be more like 70° F. This would give a temperature fall of 60° F. The table below from Caltrans Bridge Design Specifications, April 2000, section 3.16 specified a temperature rise or fall $\Delta T = 35^{\circ}$ F for moderate climate in California. If we used AASHTO with a realistic base construction temperature of 70° F, this would increase the temperature loading by 60/35 = 71%, which is not reasonable based on current practice.

Air Temperature	Design Range				
Range	Steel	Concrete			
Extreme: 120° F	Rise or Fall 60° F	Rise or Fall 40° F			
Certain mountain	Movement/Unit	Movement/Unit			
and	Length	Length			
desert locations	.00039	.00024			
Moderate: 100° F	Rise or Fall 50° F	Rise or Fall 35° F			
Interior Valleys	Movement/Unit	Movement/Unit			
and most	Length	Length			
mountain locations	.00033	.00021			
Mild: 80° F	Rise or Fall 40° F	Rise or Fall 30° F			
Coastal Areas, Los	Movement/Unit	Movement/Unit			
Angeles, and San	Length	Length			
Francisco Bay Area	.00026	.00018			

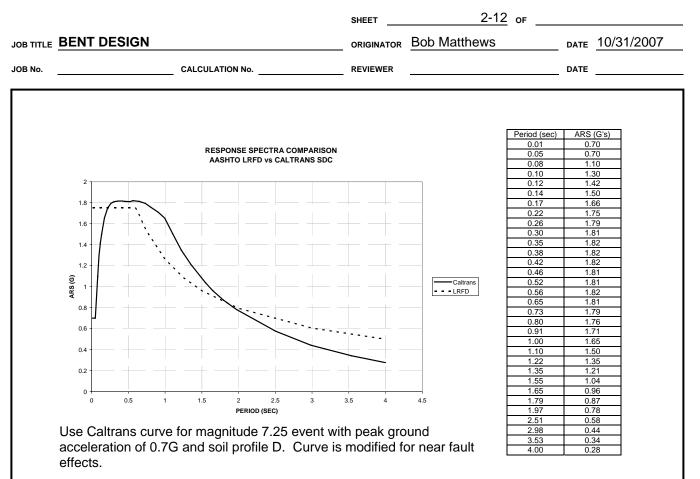
		SHEET	2-10 OF		
JOB TITLE BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/31/2007
JOB No	CALCULATION No.	REVIEWER		DATE	

Use $\Delta T = 35^{\circ}$ F consistent with Caltrans Bridge Design Specifications, April 2000, section 3.16. This will be confirmed with the Caltrans technical experts.

- Caltrans requires the forces due to temperature effects to be calculated using gross section properties and the lower bound load factor of 0.5 to account for cracking of the concrete columns (Caltrans Amendment 3.4.1).
- The longitudinal load at the bent due to temperature change should be determined using a global model to account for moment distribution effects with the superstructure. <u>CONBOX</u> was used to determine the forces shown below for a temperature fall of 35 degrees.

Case	Longitudinal Force (kips)	Vertical Force (kips)	Bending Moment (k-ft)
∆T = -35° F	75.72	-3.71	2084.34
Load per girder	12.6	-0.6	347.4

• The in-plane load at the bent due to temperature can be determined using a local bent model with $\Delta T = 35^{\circ}$ F. This should not be significant unless the bent is wide, however, it will be included since we already are neglecting the in-plane loads due to creep and shrinkage.


			SHEET	2-11 OF		
JOB TITLE	BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/31/2007
JOB No.		CALCULATION No.	REVIEWER		DATE	

2.7 Earthquake (LRFD 3.10 and Caltrans SDC)

- AASHTO LRFD requires earthquake loads to be determined using modal analysis methods with
 response spectra and response modification factor. For a CIP/PS box girder structure in high seismic
 zone, the structure is designed to withstand the maximum forces developed from the inelastic behavior
 of the columns.
- Caltrans uses their Seismic Design Criteria (SDC) for ordinary standard bridges rather than the LRFD approach. SDC requires earthquake demand displacement to be determined using modal analysis with response spectra. The structure displacement demand must be less than the inelastic displacement capacity and the target displacement ductility should be satisfied. For a CIP/PS box girder structure, the structure is designed to withstand the maximum forces developed from the inelastic behavior of the columns.

ITEM	LRFD	CALTRANS		
Key design	Response modification factor used	Equal displacement observation		
assumption	to size columns	theory and target displacement		
		ductility used to size columns		
Elastic demand	(LRFD 4.7.4) Global response	(SDC 2.2) Global response spectra		
analysis	spectra analysis to determine forces	analysis to determine displacements		
Response	(LRFD 3.10.7.1) R = 3.5 for	(SDC 2.2.4 & 3.1.4.1) SDC uses		
modification	essential bridge and $R = 5.0$ for	target and local displacement		
factor	other bridge.	ductility rather than response		
	-	modification factor.		
		Target ductility $\mu_D = 5$		
		Local ductility $\mu_{\rm C} = 3$		
Response	(LRFD 3.10.6.1)	(SDC 2.1.1) Response spectra		
spectra		curves from ATC-32, modified as		
•	$C_m = \frac{1.2AS}{T_m^{2/3}} \le 2.5A$	needed for fault characteristics.		
	$T_m^{(2)}$			
	See curve below	See curve below		
Inelastic	(LRFD 3.10.9.4) Pushover analysis	(SDC 4.3.1) Pushover analysis		
demand analysis	using 1.3M _n for columns	using overstrength moment for		
		columns		
Capacity of	Use concrete capacity as with any	(SDC 3) Use increased concrete		
members	other loading	capacity for seismic loading		
Design	Perform global response	Perform global response		
approach	spectra analysis and size	spectra analysis and size		
	column by reducing demand	column by reducing demand		
	forces by response modification	forces using target displacement		
	factor.	ductility.		
	Perform pushover analysis to	Perform pushover analysis to		
	determine loads on foundation	determine loads on foundation		
	and superstructure.	and superstructure.		
		Verify that pushover		
		displacement is less than		
		demand displacement		
		Verify target displacement		
		ductility and local displacement		
		ductility is satisfied		

• A comparison of the LRFD and Caltrans procedures is shown below.

• The Caltrans procedure for seismic design is more complicated, since it requires displacement calculations and the use of different material properties for capacity and inelastic demand. Both procedures have limitations, as the Caltrans SDC is based on the "equal displacement observation" and target displacement ductilities while the LRFD is based on using response modification factors.

		SHEET	2-13 OF		
JOB TITLE BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/31/2007
JOB No	CALCULATION No.	REVIEWER		DATE	

2.8 Load combinations (LRFD 3.4 and Caltrans Amendment 3.4.1)

See <u>Caltrans amendments</u> for load combinations. The following combinations will be used.

Combo	DC	DW	PS	HL93	P15	WS	WL	TU
Strength IA	1.25	1.5	0.5	1.75	0	0	0	0.5
Strength IIA	1.25	1.5	0.5	0	1.35	0	0	0.5
Strength IIIB	0.9	1.5	0.5	0	0	1.4	0	0.5
Strength VA	1.25	1.5	0.5	1.35	0	0.4	1.0	0.5
Service I	1.0	1.0	0.5	1.0	0	0.3	1.0	0.5
Service II	1.0	1.0	0.5	1.3	0	0	0	0.5

Notes:

- 1. Use uplift wind load for strength IIIB
- 2. Service load conditions use 0.5 factors for PS and TU rather than 1.0 since these combinations are for investigation of service load stresses in the bent cap.

		SHEET	3-1 OF		
JOB TITLE BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/19/2007
JOB No.	CALCULATION No.	REVIEWER		DATE	

SECTION 3.0 GLOBAL ANALYSIS

3.1 MODEL SELECTION

- A global model may be required to determine some of the forces in the bent structure. The need for
 a global model depends on the complexity of the bridge, types of loadings and method used to
 analyze the superstructure.
- The CONBOX program was used to analyze the superstructure for this example. The loads at the bent due to superstructure dead load, live load, secondary prestress forces, creep and shrinkage forces and temperature forces were determined using CONBOX.
- The loads at the bent due to centrifugal forces, braking and wind load were determined from manual calculations for this example.
- The global model is therefore only needed to determine the demand at the bent due to earthquake.
- Several programs are available to perform global analysis as shown below.

Program	Description
SAP2000	General finite element program
SEISAB	Program designed specifically for seismic analysis of bridges. This program has not been updated for Caltrans SDC requirements, but still may be used to determine the global displacement demand and perform preliminary sizing of the columns.
GT-Strudl	General finite element program
STAAD	General finite element program

SAP2000 will be used for the global model.

		SHEET	3-2 ог	
JOB TITLE	BENT DESIGN		Bob Matthews	date 10/19/2007
JOB No.	CALCULATION No.	REVIEWER		DATE
<u>3.2</u>	2 MODELING GUIDELINES			
•	Modeling guidelines for elastic dynamic analysis	s (SDC 5.2	2.2)	
	 Minimum 3 elements per column ar Use complete quadratic combinatio Need 90% mass participation 			
•	Section properties (SDC 5.6.1)			
	 Columns use leff = Icr (XSECTION Superstructure use leff = 0.50 lg to 			ement
	Note: SDC 5.7 recommends using reduct however, Caltrans Amendment 3.4.1 to A 0.5.			
•	Abutment stiffness (SDC 7.8)			
	Longitudinal:			
	Stiffness $K_{abut} = K_i x w x h / 5.5$ ((k/in)		
	K _i = 20 k/in/ft w = backwall/diaphragm h = backwall/diaphragm		I	
	Capacity $P = w x h x 5 x h / 5.5$			
	Force	Force		
	P _{bw} K _{eff} K _{ebut} Deflection Seat Abutments	P _{dia}	∠ _{eff} Deflec	
	Figure 7.14A Effecti	ive Abutme	nt Stiffness	

 K_{eff} shall include the effect of the abutment gap (joint) and be used in the initial analysis. If the analysis determines that the abutment capacity is exceeded by more than a factor of 2, then the spring needs to be reduced linearly down to a minimum spring of 0.1 x K_{eff} at an overcapacity factor of 4.

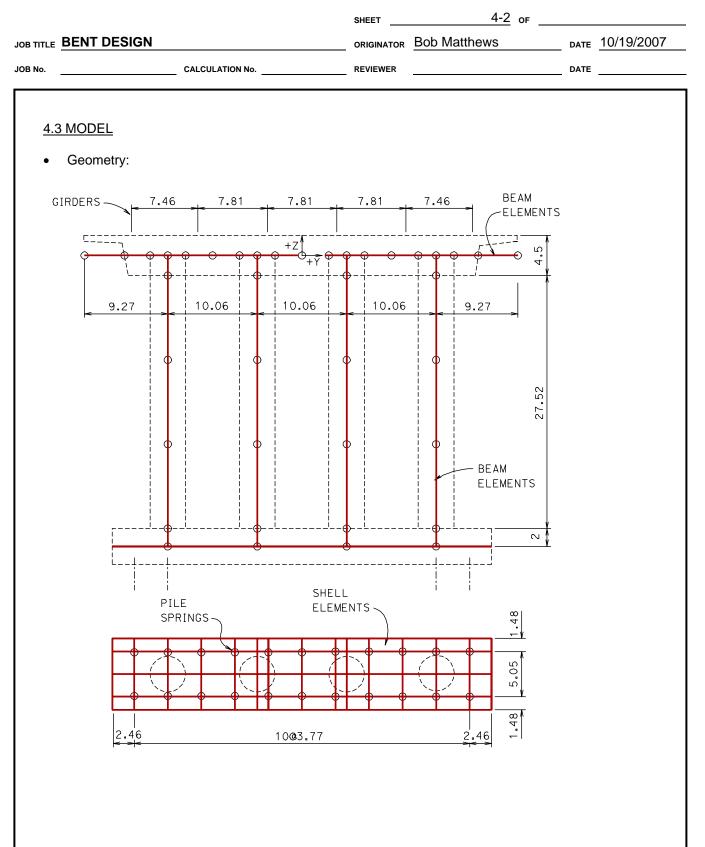
		SHEET	3-3 OF		
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	DATE	10/19/2007
JOB No.	CALCULATION No.	REVIEWER		DATE	
	Transverse:				
	Transverse stiffness may be calc for the abutment system. Other 50% of the adjacent bent stiffnes	wise use a			
<u>3.:</u>	3 MODEL				
•	The SAP2000 model for this bridge is shown be lateral bending stiffness to prevent bending defo			eled wit	h a large
			~		
		T,			
•					
<u>3.4</u>	ANALYSIS RESULTS				
•	For a detailed description of using SAP2000 to p Analysis with SAP2000" course notes available at http://dmjmharrisportal.aecomnet.com/sites/te	on the Tee	chnical Software intrane	t site for	
•	The maximum global demand displacements are	e shown b	elow.		
	Longitudinal displacement = 23.97" Transverse displacement = 20.66"				

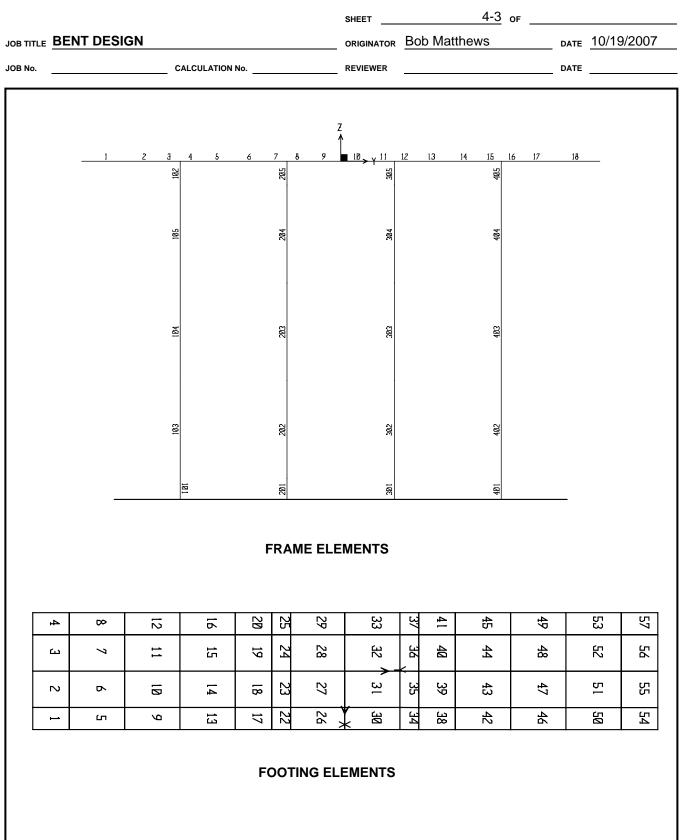
		SHEET	4-1 of		
JOB TITLE BENT DE	SIGN	ORIGINATOR BOD M	atthews	date 10/19/2007	
JOB No.	CALCULATION No.	REVIEWER		DATE	

SECTION 4.0 LOCAL ANALYSIS

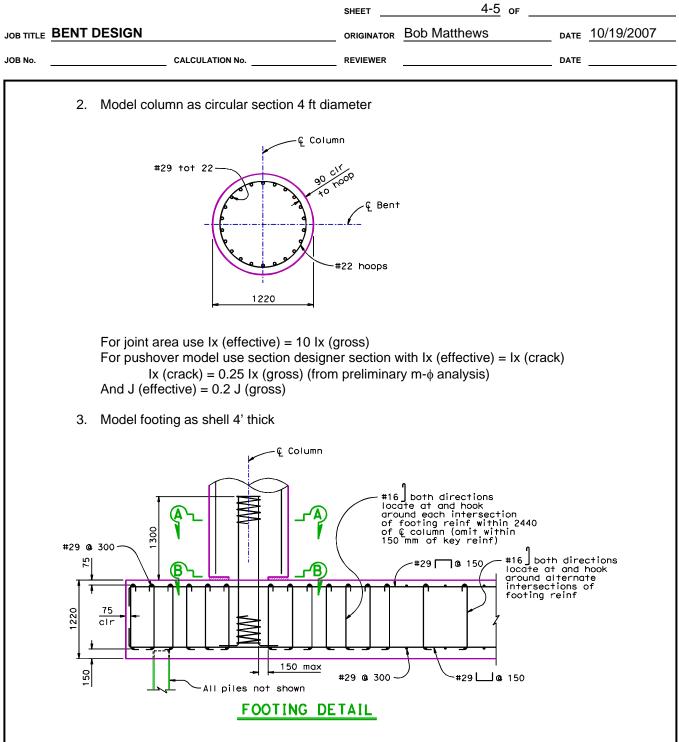
4.1 MODEL SELECTION

- A local model is required to determine the forces in the bent.
- Validated software is available to perform local analysis as shown below. This software has been verified to perform as intended. Users should complete the following steps when using software.
 - Read the manual or receive training to understand the software use and limitations
 - Verify software input after it is entered, preferably with graphical representation
 - Verify software output (equilibrium of forces and reactions, reasonableness of results like deflected shape)

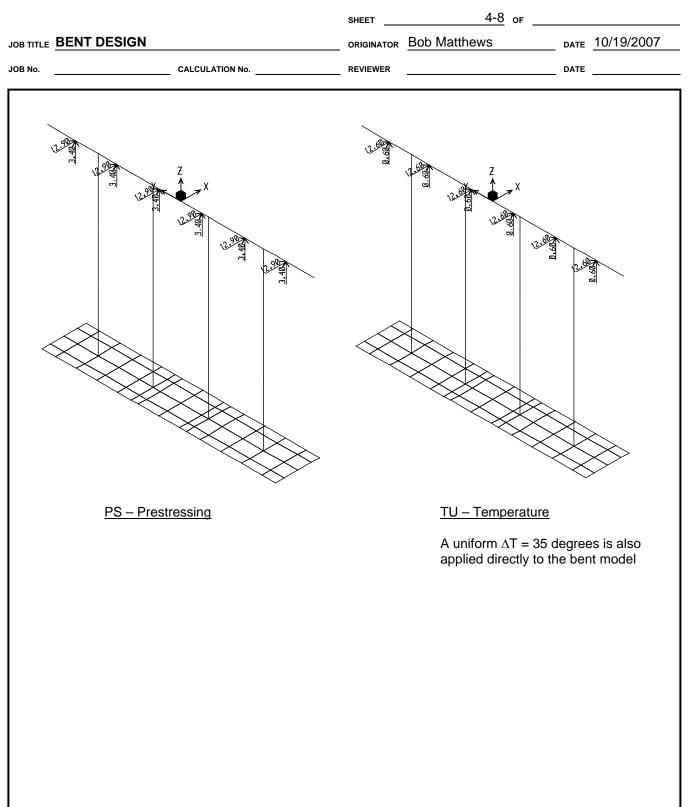

Program	Description
SAP2000	General finite element program
RCPIER	Program designed specifically for bent analysis and design. This program does not include the Caltrans amendments to LRFD or the Caltrans SDC requirements, but still may be used to determine the effects of most of the bent loadings.
GT-Strudl	General finite element program
STAAD	General finite element program
XSECTION	Column moment curvature
CONSEC	Column moment curvature

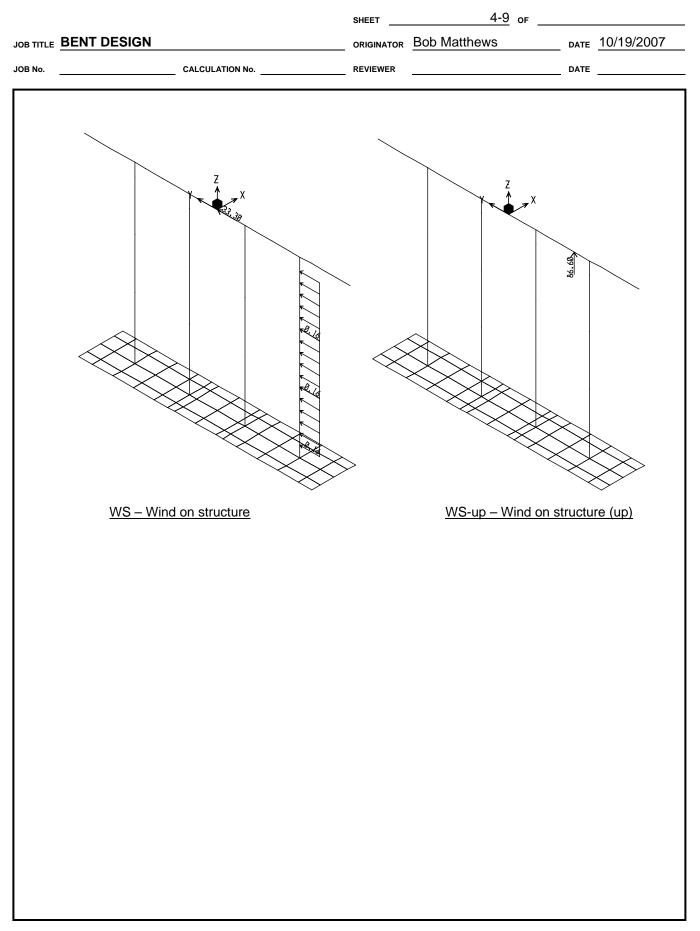

SAP2000 will be used for the local model.

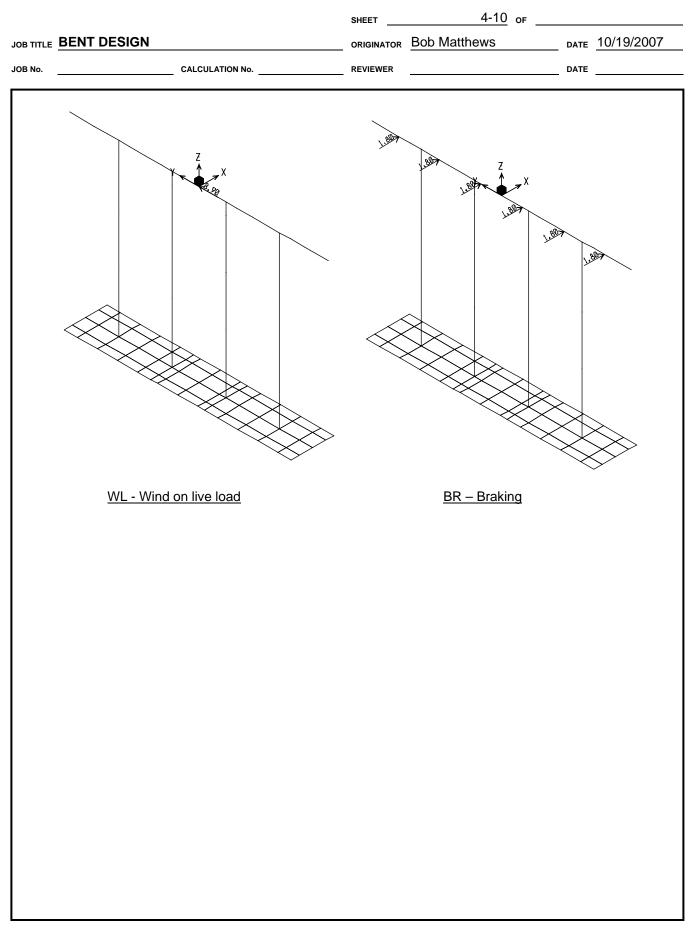
4.2 MODELING GUIDELINES


- Nodes and elements
 - 1. Provide bent cap nodes at center of spans to facilitate output moment at this location
 - 2. Provide bent cap nodes at center and faces of columns to model stiffer joint area
 - 3. Minimum 3 elements per column to be consistent with global model
 - 4. Provide column nodes at center and top of footing to model stiffer joint area
 - 5. Provide column nodes at center and soffit of bent cap to model stiffer joint area
- Section properties (SDC 5.6.1)
 - 1. Columns use leff = lg, except use lcr for pushover analysis
 - 2. Superstructure use leff = Ig, except use 0.50 Ig to 0.75 Ig based on amount of reinforcement for pushover analysis
 - 3. Use factor of 10 on section properties to model stiffer joint area

Note: SDC 5.7 recommends using reduced leff for temperature and shrinkage loads, however, Caltrans Amendment 3.4.1 to AASHTO LRFD requires use of Ig and load factor of 0.5.


		SHEET	4-4 of	
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	date <u>10/19/2007</u>
JOB No.	CALCULATION No.	REVIEWER		DATE
•	Restraints The following restraints will be applied to the mo 1. 3D springs at piles 2. Bent cap restrained for bending about Y axis input) Member Properties: 1. Model bent cap as rectangular section 6 $\frac{\lim_{t \to 0} \frac{1}{10} \frac{1}{1$	(to keep m ' wide x 4.4 '' wide x 4.4	5' deep t 22 let Mit ties stirrups yp bottom ab reinf es clearance to main cap cement es clearance to #32 tot 7. cement es clearance to main cap cement es clearance to y be lowered to restress ducts; however, mension sholl not exceed ess approved by the Engineer.	longitudinal loads




Use Ix (effective) = 10 Ix (gross) so footing will act more rigid

		SHEET	4-6 ог	
OB TITLE BENT	DESIGN	ORIGINATOR	Bob Matthews	date <u>10/19/2007</u>
IOB No	CALCULATION No.	REVIEWER		DATE
4.	Model piles with springs			
	Vertical capacity is 280 kips (70 ton pile Use Kz = 2800 k/in in pushover model) k/in
	Lateral Y capacity ~ 20 k/in + 8 x 4 x 5 Use Ky = 270 k/in in pushover model to			ve on footing)
	Lateral X capacity ~ 20 + 42.6 x 4 x 5 / Use Kx = 590 k/in in pushover model to			e on footing)
	Notes:			
	 a. Foundation deflection was not incleapacity model. b. Vertical pile stiffness estimated bac. Lateral pile stiffness taken from Cad. Passive pressure on pile cap assured to pile cap assur	ised on 1" d altrans 2000	eflection at ultimate cap) BDS section 4	

	SHEET	4-7 _{OF}	
JOB TITLE BENT DESIGN		Bob Matthews	date 10/19/2007
JOB No CALCULATION No	REVIEWER		DATE
 Loads: The loads computed in Section 2.0 are applied 	I to the mode	el as shown below.	
The second secon	and the second sec	A Contraction of the second se	100 - 100 Here - 100
DC - Dead load (constant)		<u>DW – Dead loac</u>	<u>l (varying)</u>
Load includes 240 psf on footing			

		SHEET	4-11 of	
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	date 10/19/2007
JOB No.	CALCULATION No			
			N	
	August 100 miles	A.B.		
	Augu a 34Z		Left Left	
	I ₩¥°T_X			
	August 100 million and 100 million		Li ^{BB}	20
	All			4.88
	2.3ª			August -
				${}{}$
	~~			\checkmark
	HL93 – longitudinal		P15 – Longitudinal	
	The vertical loads are applied as moving	loads		
		loudo		

		SHEET	4-12 OF		
JOB TITLE BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/19/2007
JOB No.	CALCULATION No.	REVIEWER		DATE	

4.4 ANALYSIS RESULTS

Model has been checked for input, equilibrium of forces and reasonableness of output.

• Bent cap

The critical loads on the bent cap are shown below.

CASE	ELEMENT	SHEAR (kips)	MOMENT-3 (k-ft)	COMMENT
STR-IIA	2	732	-2778	
	5	-559	-2907	
	10	163	485	
SER-II	5	308	1271	Max service load

• Column

The critical loads on the column are shown below.

CASE	ELEMENT	AXIAL	SHR-2	MOM-3	SHR-3	MOM-2
		(kips)	(kips)	(k-ft)	(kips)	(k-ft)
STR-IIA	105	1379	17.5	481	6.3	174
DC	105	467	3.5	96.1	6.5	178

• Footing

The area elements show high loads concentrated at the outer columns. The code allows the forces to be determined through sections at the face of pins. You can either determine these forces using the pile reactions and manual calculations or use SAP2000 section cut feature to sum the forces. The critical loads on the footing from SAP2000 section cuts are shown below.

CASE	SECTION	V (kips)	M (k-ft)	V (kips/ft)	M (k-ft/ft)
STR-IIA	LONG1	693	914	58.2	76.8
STR-IIA	SHORT1	447	1720	55.9	191
STR-IIA	SHORT2	572	601	71.5	75.1

Piles

The critical loads on the piles are shown below.

CASE	JOINT	HORIZ-X (kips)	HORIZ-Y (kips)	AXIAL (kips)	COMMENT
SER-I	138	-0.3	-6.7	133	LRFD 10.5.2.2 settlement
SER-II	68	-3.7	5.8	142	LRFD 10.5.2.2 lateral deflection
STR-IIA	68	-2.8	5.8	251	
STR-IIIB	136	-3.9	-8.2	110	

			SHEET	4-13 or			
B TITLE BENT DESIGN				Bob Matthews			
No		No	REVIEWER		DATE		
4 5 1101							
<u>4.5 NON</u>	LINEAR STATIC (PUSHC	DVER) ANALYS	<u>515</u>				
	HTO LRFD 3.10.9.4 requi strength moment = 1.3M _n .		nalysis for be	nts in high seismic reo	gions using an		
"Eart	a detailed description of us hquake Analysis with SAI AP2000 at						
<u>http:/</u>	//dmjmharrisportal.aecom	net.com/sites/te	ech_soft/struc	tural/sap2000/default.	aspx		
	The Caltrans overstrength moment is less than 10% higher than the LRFD overstrength moment using the maximum axial load						
	Axial load	Mo (Caltra	ns SDC)	Mo AASHTO LRFE			
	937 kips	1.2 x 3424		1.3 x 2907 = 3779			
467 k * * *	ips on the column. The re	esults of this an	alysis are sho	own below.			
*				*			
*	PROGRA	M CONS	ΕC	*			
*	INPUT	DATA ECHO		*			
* * *	* * * * * * * * *			* * * * *			
	ion 1.4)		0/15/07, 9				
-	file = consec.in t file = consec.out						
	E S S - S T R A I	-		-			
CONCR	ETE MODEL:						
:	Mander concrete mod	el					
	Unconfined str Unconfined str Modulus of ela Ultimate strai	ess = 5 sticity = 4	.002 200 110328 .02201				
	Ultimate strai Ultimate stres						

= 0.005 = 8413.7

Spalling strain Confined stress

				SHEET		4-14 of		
LE BE	NT DESIGN			ORIGINATO	R Bob Matth	ews	DATE	10/19/200
		CALCULATIO	N No	REVIEWER			DATE	
	Cir	cular hoop	o confinem	ent:				
		Bar diam		= 0.875				
		Long spa Concrete	cover	= 3 = 4				
		Yield st	rength					
			e strain ameter					
		ноор ита	ameter	= 40				
REII	NFORCING M	10DEL:						
		forcing mo						
	(with com	nplex strai	in hardeni	ng)				
	Poin	nt Stra	ain Str	ess				
	1	-0.0)9 –95	000				
	2)125 -68					
	3 4)023 -68)023 68					
	5)125 68	000				
	6			000				
	NCREI		1 F I G U	R A T I O N ===========				
====	N C R E I		1 F I G U	RATION				
====	N C R E T	CTIONS:	1 F I G U	RATION				
====	N C R E T ====== IRCULAR SE Ycenter	CTIONS: Radius	N F I G U ======= Add	RATION				
====	N C R E T	CTIONS:	1 F I G U	RATION				
===== 1 C: R E	N C R E T ====== IRCULAR SE Ycenter 24 I N F O R	CCTIONS: Radius 24 C I N G	NFIGU Add 1 CONF	R A T I O N ======= I G U R A T	I O N			
===== 1 C: R E	N C R E T ====== IRCULAR SE Ycenter 24 I N F O R	CTIONS: Radius 24	NFIGU Add 1 CONF	R A T I O N ======= I G U R A T				
==== 1 C: R E ====	N C R E T ====== IRCULAR SE Ycenter 24 I N F O R	CTIONS: Radius 24 C I N G	NFIGU Add 1 CONF	R A T I O N ======= I G U R A T	I O N			
==== 1 C: R E ====	N C R E T ======= IRCULAR SE Ycenter 24 I N F O R ========	CTIONS: Radius 24 C I N G C I N G ARCS:	NFIGU Add 1 CONF	R A T I O N ======= I G U R A T	I O N			
==== 1 C: R E ====	N C R E T ======= IRCULAR SE Ycenter 24 I N F O R ======== EINFORCING	CTIONS: Radius 24 C I N G C I N G ARCS:	NFIGU Add 1 CONF	R A T I O N ====== I G U R A T ========	I O N 			
===== 1 C: R E ==== 1 RI	N C R E T ===================================	CTIONS: Radius 24 C I N G ARCS: Radius 19	Add CONF Abeg	R A T I O N ======= I G U R A T ========= Atot	I O N 	Abar		
===== 1 C: R E ===== 1 RI L O	N C R E T ====================================	CTIONS: Radius 24 C I N G ARCS: Radius 19 N D I T J	Add 1 CONF Abeg 0	R A T I O N ======= I G U R A T ========= Atot	I O N Nbar 22	Abar 1		
===== 1 C: R E ==== 1 RI L O ====	N C R E T ====================================	CTIONS: Radius 24 C I N G C I N G ARCS: Radius 19 N D I T 1	Add 1 CONF Abeg 0	R A T I O N ======= I G U R A T ========== Atot 343.6364	I O N Nbar 22	Abar 1		
===== 1 C: R E ==== 1 RI L O ==== (Un:	N C R E T ====================================	CTIONS: Radius 24 C I N G C I N G ARCS: Radius 19 N D I T I	Add 1 CONF Abeg 0	R A T I O N ======= I G U R A T ========== Atot 343.6364	I O N Nbar 22	Abar 1		
===== 1 C: R E ==== 1 RI L O ==== (Un:	N C R E T ====================================	CTIONS: Radius 24 C I N G C I N G ARCS: Radius 19 N D I T I	Add 1 CONF Abeg 0 LONS	R A T I O N ======= I G U R A T ========== Atot 343.6364	I O N Nbar 22	Abar 1		

E BENT DESIGN	SHEET4	-15 of /sdate 10/19/20
	REVIEWER	DATE
MEMBER PROPERTIES		
MEMBER PROPERTIES:		
Member length	= 330	
BOUNDARY CONDITIONS:		
Condition End i En	ıd j	
Shear restraint 1 1 Moment restraint 1 0		
Moment restraint 1 0		
*	*	
* PROGRAM CONS *	E C *	
* OUTPUT DATA	*	
	* * * * * * * * *	
SECTION PROPERTIES		
GROSS CONCRETE SECTION: Area = 1.8096E+03 Ybar = 2.4000E+01 Io = 2.6058E+05 About conc	rete CG	
REINFORCING STEEL:		
Area = 2.2000E+01 Ybar = 2.4000E+01 Io = 3.9710E+03 About rein	nf CG	
TRANSFORMED CONCRETE SECTION:		
Area = 1.9628E+03 Ybar = 2.4000E+01 Inertia = 2.8824E+05		
MOMENT CURVATURE		
<pre>Moments about centroid of gross conc (Units = K-ft)</pre>	rete section	
Load Condition Number 1 Axial Load = 467.0		

			SHEET	4-1	6 оғ	
TITLE BENT DES	IGN		ORIGINATOR	Bob Matthews		date <u>10/19/2007</u>
No		No	REVIEWER			DATE
Obara dar		D ¹ - ¹		a	N	- L
Strain		Axial		Curvature	Momer	
0.00050	18.95	465.3 462.1		0.000026	999.9	
0.00100	15.60			0.000064	1807.	
0.00150 Reinf ter	14.40	459.5		0.000104	2431.	1
0.00200	13.25	463.8		0.000151	2667.	4
0.00250	12.45	460.7		0.000201	2007.	
0.00300	11.90	463.5		0.000252	2817.	
0.00350	11.55	403.5		0.000303	2817.	
0.00350	11.30	457.4		0.000354	2840. 2851.	
0.00400	11.15	458.4		0.000354		
Reinf cor		401.4		0.000404	2851.	4
0.00500	11.15	455.8		0.000448	2839.	0
0.00550	11.15	455.8		0.000448	2839.	
Conc spal		455.7		0.000489	2030.	5
0.00600	11.40	461.1		0.000526	2824.	5
	11.40	454.9		0.000520	2812.	
0.00650						
0.00700	11.60	461.2		0.000603 0.000644	2826.	
0.00750	11.65	464.3			2843.	
0.00800	11.65	459.5		0.000687	2857.	
0.00850	11.65	455.6		0.000730	2874.	
0.00900	11.65	452.3		0.000773	2894.	
0.00950	11.70	463.7		0.000812	2925.	
0.01000	11.70	463.1		0.000855	2946.	
0.01050	11.70	461.6		0.000897	2965.	
0.01100	11.70	461.3		0.000940	2984.	
0.01150	11.70	460.3		0.000983	3002.	
0.01200	11.70	459.7		0.001026	3020.	
0.01250	11.70	457.9		0.001068	3036.	
0.01300	11.70	456.3		0.001111	3053.	
0.01350	11.75	464.0		0.001149	3074.	
0.01400	11.75	461.9		0.001191	3087.	
0.01450	11.75	460.1		0.001234	3099.	
0.01500	11.75	457.7		0.001277	3109.	
0.01550	11.75	455.7		0.001319	3120.	
0.01600	11.75	455.3		0.001362	3131.	
0.01650	11.75	454.2		0.001404	3141.	
0.01700	11.80	465.8		0.001441	3161.	
0.01750	11.80	463.6		0.001483	3169.	
0.01800	11.80	462.9		0.001525	3178.	
0.01850	11.80	462.0		0.001568	3186.	
0.01900	11.80	460.8		0.001610	3194.	
0.01950	11.80	459.0		0.001653	3200.	
0.02000	11.80	456.2		0.001695	3204.	
0.02050	11.80	454.4		0.001737	3209.	
0.02100	11.80	453.3		0.001780	3215.	
0.02150	11.80	452.0		0.001822	3220.	
0.02200	11.85	466.1		0.001857	3240.	1

JOB TITLI	BENT DESIGN	ORIGINATOR	Bob Matthews	DATE	10/19/2007
JOB No.	CALCULATION No.	REVIEWER		DATE	
	Yield curvature = 1.0417E-0	14			
	Ultimate curvature = 1.8565E-0				
	Idealized plastic moment = 2991.3	0.5			
	Maximum tension $= -1335$. At	moment	= 3240 1		
			- 5210.1		
	Cracked moment of inertia = 6.8136E+0	0.4			
	Based on 1st yield strain = -0.00296	0 1			
	LOCAL MEMBER DUCTILITY:				
	Idealized yield curvature = 1.28	17E-04			
	Plastic hinge length = 37.9				
	Yield deflection = 4.653	3			
	Ultimate deflection = 25.03	33			
	Local member ductility = 5.4				
	<u>_</u>				

SHEET

4-17 _{оғ}

OB TITLE OB No.	BENT DESIGN CALCULATION No	SHEET OF ORIGINATOR BOD Matthews REVIEWER	_ date <u>10/19/2007</u> _ date
•	<u>Transverse analysis</u> Transverse analysis may be performed using the section properties of the members will be used is used with SAP2000 to internally generate him 1. Define material properties for rebar – Define > Materials – Check "Show Advanced Properties" – Click "Add New Material Quick" – Select Rebar ASTM A706 – Click "Modify/Show Material Properties" – Change expected yield stress and tension	as described in section 4.3. The foll ge properties based on Caltrans SD	owing procedure C requirements.
	Material Property Data Material Name [A706 [A706 Modulus of Elasticity E1 [29000. Weight and Mass Weight per Unit Volume Mass per Unit Volume Other Properties for Reb Minimum Yield Stress, F; U12 0. Coeff of Thermal Expansion A1 [6:500E-06 Shear Modulus G12 0. OK	7.345E-07 ar Materials y Fu 80. Fye 68 s, Fue 95	

- Select "Nonlinear Material Data"

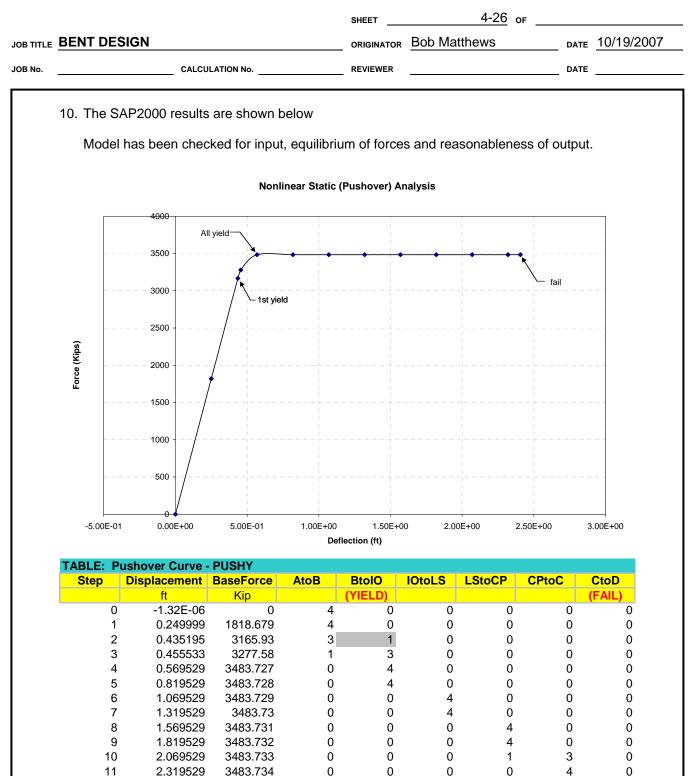
		sheet 4-19 of	
JOB TITLE BENT DES	IGN	ORIGINATOR Bob Matthews	date <u>10/19/2007</u>
JOB No.	CALCULATION No.	REVIEWER	DATE
	lect <u>Park</u> Stress-Strain Curve Dentrolling Strain Values" as shown Nonlinear Material Data Edit Material Name A706 Hysteresis Type Friction Angle Citeres-Strain Curve Definition Options	Material Type Febar Ier Parameters Units Kip, in, F	rans Default
	Parametric Park User Defined Parametric Strain Data Strain At Onset of Strain Hardening Ultimate Strain Capacity Use Caltrans Default Controlling Strai Show	Stress-Strain Plot	
– De – Ch – Cliu – Sel – Cliu	material properties for concrete fine > Materials eck "Show Advanced Properties ck "Add New Material Quick" lect Concrete f'c 4000 ck "Modify/Show Material Proper ange specified concrete compre		wn below
	Material Name Material Type [4000Psi Concrete Modulus of Elasticity Weight and M E Jac04.9955 Poisson's Ratio Description Other Propertion Specified Concrete U [0.2 Coeff of Thermal Expansion A A [5.500E-06 Shear Modulus Coeff of 1502.0819	ass nit Volume 8.681E-05 t Volume 2 249E-07 es for Concrete Materials norrete Compressive Strength, f'o 5.2	

OK Cancel

		SHEET	4-20 of	
JOB TITLE BENT D	ESIGN	ORIGINATOR	Bob Matthews	date 10/19/2007
JOB No.	CALCULATION No.	REVIEWER		DATE
	Select "Nonlinear Material Data" Select <u>Mander</u> Stress-Strain Curv Edit Material Name 4000Psi Hysteresis Type Kinematic Stress-Strain Curve Definition Options Parametric User Defined	Material Type Concrete rager Parameters ngle 0. al Angle 0.	on as shown below	
-	Click "Show Stress-Strain Plot" Select "Modify/Show Mander Data below	iow Stress-Strain Plot	2.000E-03 5.000E-03 data for configuration of ca	olumn as shown
	Mander Concrete Stress-Strain Data			
	Material Name 4000Psi Mander Type Cunconfined Confined; Rectangular Core Confined; Circular Core; Hoop Confinement Steel Confined; Circular Core; Spiral Confinement Steel Mander Data Source Frame Section Property Cuser Defined General Confinement Bar Property Confinement Bar Property Confinement Bar Yield Stress Hoop Longitudinal Spacing (CL to CL) Material Surce OK	Concrete	₩7 1 40	

		SHEET	4-21 of	
JOB TITLE	BENT DESIGN	ORIGINATOR BOD Matth	ews	date <u>10/19/2007</u>
JOB No.	CALCULATION No	REVIEWER		DATE
- 				
	 3. Define section designer section for column Define > Frame Section Click "Add New Property" Select "Other / Section Designer" Complete SD Data as shown below 			
	SD Section Data			
	Base Material + 4000 Design Type O No Check/Design C General Steel Section G C Concrete Column Concrete Column C Reinforcement to be Checked Reinforcement to be Design Define/Edit/Show Section Section Design	rd ed iner roperty Modifiers Set Modifiers	low	
	Frame Property/Stiffness Modificat	ion Factors		
	Property/Stiffness Modifiers for Analys Cross-section (axial) Area Shear Area in 2 direction Shear Area in 3 direction Torsional Constant Moment of Inertia about 2 axis Moment of Inertia about 3 axis Mass Weight			
	 Click "Section Designer" to start up s 	ection designer modu	ıle	

		sheet 4-22 of	
JOB TITLE BENT D	ESIGN	ORIGINATOR BOb Matthews	date <u>10/19/2007</u>
JOB No.	CALCULATION No.	REVIEWER	DATE
-	 Draw Caltrans Shape Round Right click on shape and complete Section Properties Section Height 48 Base Height 48 Base Height 48 Base Width 48 Base Width 48 Base Width 48 Base Width 48 	data as shown below	
	Factor 0. Show Rings No. of Rings 1 Ring1 Cover [3.5] Region Ring 1 Ring1 Cover [3.5] Region Ring Edit Bundle Region Ring Edit Bundles Torel Ring1 Image: Cover [3.5] Prestressing Tendons N/A 0. Tendon N/A N/A Concrete Model Model Material MODERSI Cor	Bundle Bundle Confinement Confinement Dia Bar No. Type Area Dia Bar No. Type Area 1 1.128 #3 Hoop 0.6 N/A N/A N/A N/A N/A N/A Hoop 0 te Concrete Core1 Show te Concrete Mander-Unconfi Show	
	Click "Show" for Core Concrete and Correct Model 000000000000000000000000000000000000	d Outer Concrete to verify data as	s shown below


		SHEET	4-23 OF	
BENT DE	SIGN	ORIGINATOR	Bob Matthews	date <u>10/19/2007</u>
3 No.	CALCULATION No.	REVIEWER		DATE
	Concrete Model			x
	icui 0.005 icui 0.005 icui 0.002 i'cui 5.2 i/2= 3.4 i'cui 1000 i'cui		Stress Strain 2.000E-03 ε c0 2.000E-03 ε sp 5.000E-03 ε fact 1. rc 5.2	
	4.490E-03,1.7342	Us	View Values or Print	
-	Display > Show Moment-Curv Check "Caltrans Idealized Mod	ature Data del" and fill in axi	al load to check as show	wn below
	<i>*10-5</i> 4.00 3.60 3.20 2.80 2.40 1.60 1.20 0.80	Curvature		

2.00	
1.60	
1.20	
0.80	
0.40	
	12.5 15.0 17.5 20.0 22.5 25.0 <i>×10</i>
Select Parameters for Graph	Moment-Curvature
Specify Scales/Headings >>	
Caltrans Idealized Model	No. of Points 20
P [Tension +ve] -467	Angle (Deg)
Max Curvature 0.0238	Mmax = 3281.576
Phi-Conc = .02379658	M-Conc = 3281.576
Phi-Steel = .03386995	M-Steel = 2883.601
Phi-yield(Initial) = .00100744	M-yield = 2191.624
Phi-yield(Idealized) = .00138821	Mp = 3019.9878
ICrack = 4.191	

		SHEET	4-24 OF	
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	date <u>10/19/2007</u>
JOB No.	CALCULATION No.	REVIEWER		DATE
	 4. Assign section to members 5. Assign frame hinges automatica Select members to apply Assign > Frame > Hinge Click Add "Auto" hinge Select "Caltrans Flexura 	y hinges al Hinge", Select "P-M3'		er hinge length
	and check "Drops Load		i below.	
	🐂 Auto Hinge Assignment Data			
	Auto Hinge Type			
	Caltrans Flexural Hinge			
	Degree of Freedom	Miscellaneou:	: Data	
	C M2 C P-M2	Hinge Length		
	С M3 С Р-М3 С M2-M3 С Р-М2-М3		lized (Bilinear) Moment-Curvature Curve	
	Interaction Data Total Number of PM Curves Max Num Points on Each PM Curve	2 © Drops Lo	Controlled Hinge Load Carrying Capacity ad After Point Ej slated After Point E	
		OK Cancel	1	
	 Verify generated hinge propertie 	s, if desired, in the Def	ine > Hinge Properties m	nenu
	7. Define load cases			
	 Dead load (DC) Unit lateral load at top or 	f columns (FY)		

			SHEET	4-25 OF	
JOB TITLE	BENT DESIGN		ORIGINATOR	Bob Matthews	date <u>10/19/2007</u>
JOB No.	c	CALCULATION No.	REVIEWER		DATE
JOB No.	8. Define analysis c – Select de – Click "Mo – Select "N – Select "A	ases ead load case (DC) odify/Show Case"	e form as Analysis Cass Static Analysis Type C Linear Nonline C Nonline C Nonline C P-Delta C P-Delta	Type	

9. Run analysis

Ductility = 2.406 / 0.435 = 5.5

2.405754

2.405758

2.499999

3483.734

3483.734

3471.54

		SHEET	4-27 of		
JOB TITLE BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/19/2007
JOB No.	CALCULATION No.	REVIEWER		DATE	

Bent cap

The critical loads on the bent cap are shown below. A factor of 1.2 is applied to loads on the capacity protected members in accordance with SDC 4.3.1.

CASE	ELEMENT	SHEAR (kips)	MOMENT-3 (k-ft)	COMMENT
PUSHY	14	664	-3322	M-ve
	5	407	1529	M+ve
1.2 X	14	797	-3986	Overstrength loads
	5	488	1835	

Column

The critical loads on the column are shown below.

CASE	ELEMENT	AXIAL	SHR-2	MOM-3	COMMENT
		(kips)	(kips)	(k-ft)	
PUSHY	404	937	123	3388	Max P
1.2 X	404		148		
PUSHY	104	104	95.8	2636	Min P
1.2 X	104		115		

• Footing

The area elements show high loads concentrated at the outer columns. The code allows the forces to be determined through sections at the face of pins. You can either determine these forces using the pile reactions and manual calculations or use SAP2000 section cut feature to sum the forces. The critical loads on the footing from SAP2000 section cuts are shown below.

CASE	SECTION	V	М	1.2V/w	1.2M/w
		(kips)	(k-ft)	(kips/ft)	(k-ft/ft)
PUSHY	LONG1	334	430	33.7	43.4
PUSHY	SHORT1	355	1569	53.3	235

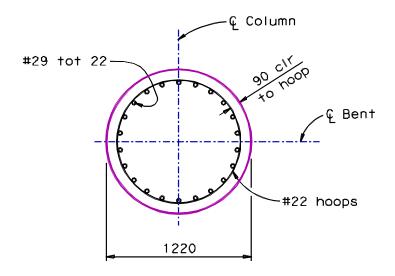
Piles

The critical loads on the piles are shown below.

CASE	JOINT	HORIZ-Y	AXIAL	COMMENT
		(kips)	(kips)	
PUSHY	68	-	90.5	Max compression
1.2 X	68		109	
PUSHY	68	-	-150	Max tension
1.2 X	68		-180	
PUSHY	138	-19.2	-	Max shear
1.2 X	138	-23.0		

			SHEET	5-1 of	=	
JOB TITLE	BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/31/2007
JOB No.		CALCULATION No.	REVIEWER		DATE	

SECTION 5.0 DESIGN


Caltrans SDC 3.2.1 allows use of expected material properties (except for shear) to determine the capacity of members for seismic loads and Caltrans Amendment 5.5.5 specifies use of a resistance factor of 1.0 for seismic loads. However, nominal material properties with φ = 1.0 will be conservatively utilized herein for simplicity.

5.1 BENT FRAME

Caltrans SDC has requirements for frame displacement capacity and ductility to resist seismic loads

ITEM	DEMAND	CAPACITY	SDC
			REFERENCE
Displacement X	24.0	25.0	4.1
Displacement Y	20.7	28.9	4.1
Target ductility X	5.0	5.4	2.2.4
Target ductility Y	5.0	5.5	2.2.4

5.2 COLUMN

• Column axial-moment capacity for non-seismic loads is based on LRFD 5.7.4

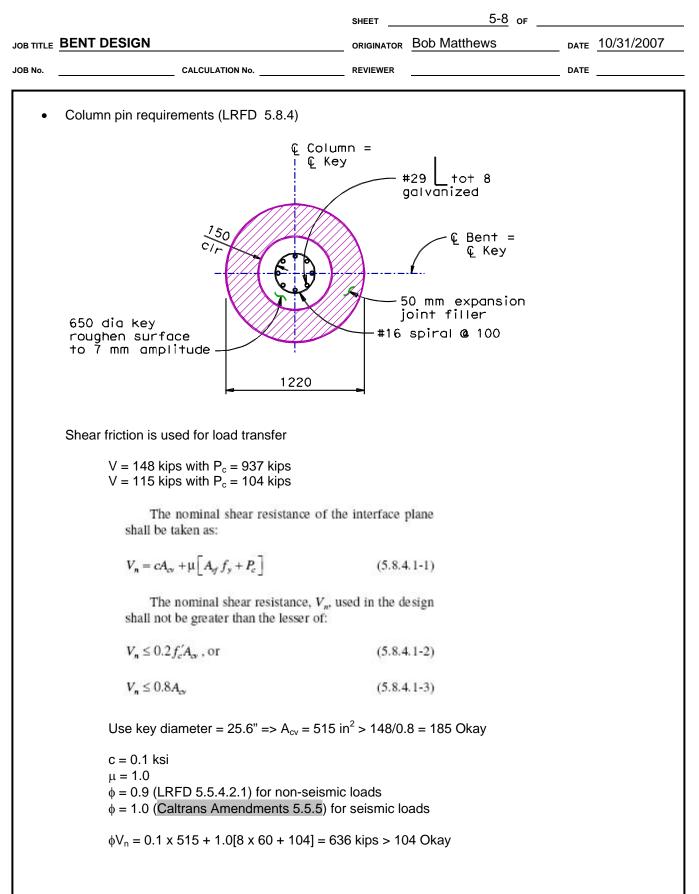
Use CONSEC program to analyze column for non-seismic loads

$$\begin{split} &\mathsf{P}_{\mathsf{SRT-IIA}} = 1379 \text{ kips} \\ &\mathsf{M}_{\mathsf{SRT-IIA}} = \ ((481)^2 + (174)^2)^{1/2} = 512 \text{ k-ft} \\ &\mathsf{M}_{\mathsf{DC}} = ((96.1)^2 + (178)^2)^{1/2} = 202 \text{ k-ft} \\ &\beta_{\mathsf{d}} = 202/512 = 0.39 \text{ (LRFD 5.7.4.3)} \\ &\mathsf{K} = 2.0 \text{ for pinned support at footing (LRFD C4.6.2.5)} \end{split}$$

		SHEET 5-2 of	
LE BENT DESI	GN	ORIGINATOR BOD Matthews	date 10/31/200
	CALCULATION No.	REVIEWER	DATE
* * * * * *	* * * * * * * * * * *	* * * * * * * * * *	
*	PROGRAM CON	SEC *	
*	INPUT DATA ECHO	*	
* * * * * (Version	* * * * * * * * * * * * * * * * * 1.4)	* * * * * * * * * * * 10/19/07, 1:16 pm	
-	<pre>= nonseismic.in e = nonseismic.out</pre>		
	N CRITERIA		
Design Cri Units	teria = AASHTO LRFD (200 = English (inches)		
MATERIAL S	TRENGTH:		
Concr Reinf	ete compressive strength ete modulus of elasticit orcing yield strength orcing modulus of elast:	ty = 3640000 = 60000	
STRENGTH R	EDUCTION FACTORS:		
Compr	on and flexure = 0.9 ession and flexure = 0.7 and torsion = 0.9	75	
STRESS BLC	СК:		
Ratio	of average concrete str of depth of compression um concrete strain		
RESISTANCE	FACTORS:		
Concr Reinf	ete = 1 orcing = 1		
	ETE CONFIGUR		
1 CIRCULAR	SECTIONS:		
Ycente	r Radius Add		
24	24 1		

DF					Dala Marith			40/04/00
LE <u>BE</u>	ENT DESIGN					ews	DATE	10/31/20
			N No	REVIEWER			DATE	
R E	LINFOR		CONFI			_		
						-		
1 R	REINFORCING	ARCS:						
	Ycenter	Radius	Abeg	Atot	Nbar	Abar		
	24	19	0	343.6364	22	1		
-	DAD CO							
	nits = K-ft		.==========		======	=		
1 L	JOAD CONDIT	IONS:						
	No	Axial	Moment	Shear	Torsion			
	1	1379.0	512.0	0.0	0.0			
ΜE	EMBER	PROPE	RTIES					
===	:======				========	=		
MEM	IBER PROPER	TIES:						
MEM	Member le		ctor	= 33 = 2	0			
	Member le	ngth length fa	ctor		0			
	Member le: Effective JNDARY COND	ngth length fa ITIONS:	ector End i	= 2	0			
	Member le: Effective JNDARY COND	ngth length fa ITIONS: traint	End i	= 2	0			
BOU.	Member le Effective JNDARY COND Condition Shear res	ngth length fa ITIONS: traint straint	End i	= 2 End j 1	0			
BOU. S L ===	Member le Effective JNDARY COND Condition Shear res Moment re	ngth length fa MITIONS: traint straint N E S S =========	End i 1 1	= 2 End j 1 0		=		
BOU S L === (Mor	Member le Effective JNDARY COND Condition Shear res Moment re L E N D E R	ngth length fa MITIONS: traint straint N E S S =================================	End i 1 1	= 2 End j 1 0		=		
BOU S L === (Mo Mom	Member le Effective JNDARY COND Condition Shear res Moment re L E N D E R Dents in K	ngth length fa MITIONS: traint straint N E S S ========= -ft) ication pe	End i 1 1	= 2 End j 1 0		=		
BOU S L === (Mo Mom	Member le Effective UNDARY COND Condition Shear res Moment re L E N D E R Dent S in K	ngth length fa MITIONS: traint straint N E S S ========= -ft) ication pe	End i 1 1	= 2 End j 1 0		=		
BOU S L === (Mo Mom	Member les Effective INDARY COND Condition Shear res Moment re L E N D E R E N D E N	ngth length fa DITIONS: traint straint N E S S ========= -ft) ication pe TONS:	End i 1 1 er design c	= 2 End j 1 0		=		
BOU S L === (Mo Mom	Member les Effective UNDARY COND Condition Shear res Moment re L E N D E R ments in K ment magnif LOAD CONDIT No	ngth length fa MITIONS: traint straint N E S S ========= -ft) ication pe TIONS: Mlns	End i 1 1 er design c M2ns	<pre>= 2 End j 1 0 ==================================</pre>		=		

																5-4 OF			10/04/06	_
LE RF	NT DES	GN								_ 0	RIGIN	ATOR	<u>В</u>	ob Ma	tthews	6		DATE	10/31/20	10
			c	ALCUL	ATION	No				_ RI	EVIEW	ER						DATE		
	No		di			44			ri				rj							_
	-																			
	1		0			0			0				0							
* *	* * *	* *	* *	* :	* *	* *	* *	* *	*	* :	* *	*	*	* * *	* *					
*		_			_		_		_	_					*					
*		P	RΟ	GI	RΑ	М	C (ΟΝ	S	E (2				*					
*															*					
*				(JUTF	νUT	DAT	A							*					
* *	* * *	* *	* *	• * •	* *	* *	* * *	* *	*	* ;	٠ *	*	*	- * 1	* *					
	<u> </u>	^	^	n	*	^	^	κ	<u>^</u>	^ .	×	~	Ŷ	× • ·						
S E	СТІ	∩ N	P) קי	Ω	ਜ ਯ	, т.	ਸ਼ਾ	S											
	=======	-			-					==:	===	===	===		==					
								-	-	-		-	••		-					
GRO	SS CONO	CRET	E SE	CTI	: NC															
	Area		= 1.	8090	6ፑ+(13														
	Ybar																			
	Io						hou	t c	onc	ret	e	CG								
	± •			002	<u> </u>	/3 -			0											
REI	NFORCIN	IG S	TEEL	,:																
	_		0	220	~ (
	Area																			
	Ybar						1			۔ ،	~~									
	Io		= 3.	9/11	JĽ+()3 H	bou	C L	етп	.Γ (<u>.</u> G									
TRA	NSFORM	ED C	ONCR	ETE.	SEC	TIC)N:													
	Area		= 1.	9628	8E+()3														
	Ybar																			
	Ybar Inert		= 2.	8824	4Ľ+(15														
	Inert	cia																		
	Inert T E R	cia A C	ΤI	01	N	DI	A (
===:	Inert T E R	cia A C	T I ====	I O I	N ====	D I	====	===	===	===					:==					
=== Mom	Inert T E R	A C ==== pout	T I ==== cen	I O I	N ====	D I	====	===	===	===					==					
===: Mom (Un	Inert T E R ====== ents ak	A C ==== pout	T I ==== cen)	I O I	N ====	D I	ros:	=== 5 C	===	===					==					
=== Mom	Inert T E R ====== ents ak	A C ==== pout	T I ==== cen) Mn	0 1 ==== itro:	N ====	D I	gros: Pi	=== s c n	onc	ret		sec	eti(on		aion				
===: Momo (Un C	Inert T E R ====== ents ak its = F	A C ==== pout	T I ==== cen) Mn 0.0	: 0 I :===: itro:	N ====	D I	gros: Pi -:	=== s c n 132	=== onc	ret		sec	eti(on	=== n ten	sion				
===: Momo (Un. C 2.3	Inert T E R ====== ents ak its = F 5	A C ==== pout	T I ==== cen) Mn 0.0 166	0 I ==== itro: .4	N ====	D I	9705: Pi -: -:	=== s c n 132 123	==== onc 0.0 2.4	ret		sec	eti(on		sion				
==== Mom (Un) C 2.3 4.7	Inert T E R ======= ents ak its = F 5 0	A C ==== pout	T I ==== cen) Mn 0.0 166 665	0 I ==== itro: 5.4	N ==== id c	D I	Pi 9ros: -: -: -:	=== s c n 132 123 928	=== onc 0.0 2.4 .5	ret		sec	eti(on		sion				
==== Mom (Un C 2.3 4.7 7.0	Inert T E R ======= ents ak its = P 5 0 5	A C ==== pout	T I ==== cen) Mn 0.0 166 665 125	0 I ==== itro: .4 .0	N ==== id c	D I	Pi 97058 	=== s c 132 123 928 533	0.0 2.4 .5	ret		sec	eti(on		sion				
==== Mom (Un. C 2.3 4.7 7.0 9.4	Inert T E R ====== ents ak its = P 5 0 5 0	A C ==== pout	T I ==== cen) Mn 0.0 166 665 125 178	0 I ==== itro: 5.4 5.4 5.4 5.4 6.1	N ==== id c	D I	Pi 97058 -1 -1 -1 -1 -1 -1 -1 -1	=== s c 132 123 928 533 137	0.0 2.4 .5	ret		sec	Ma:	on kimun	n ten					
==== Mom (Un. C 2.3 4.7 7.0 9.4 10	Inert T E R ====== ents ak its = P 5 0 5 0 25	A C ==== pout	T I ==== cen) Mn 0.0 166 665 125 178 195	0 I ==== itro: .4 .0 5.4 .0 5.4 .6 .1 .4 .3	N ==== id c	D I	Pr 	=== s c 132 123 928 533 137 .7	=== onc 0.0 2.4 .5 .6 .8	ret		sec	Ma:	on kimun						
==== Mom (Un. C 2.3 4.7 7.0 9.4 10. 11.	Inert T E R ====== ents ak its = P 5 0 5 0 25 75	A C ==== pout	T I ==== cen) Mn 0.0 166 665 125 178 195 225	0 I ==== itro: 5.4 5.4 6.1 64.3 55.7	N ==== id c	D I	Pr 	=== s c 132 123 928 533 137 .7 58.	=== onc 0.0 2.4 .5 .6 .8 0	ret		sec	Ma:	on kimun	n ten					
==== Mom (Un. C 2.3 4.7 7.0 9.4 10. 11. 14.	Inert T E R ====== ents ak its = P 5 0 5 0 25 75 10	A C ==== pout	T I ==== cen) Mn 0.0 166 665 125 178 195 225 267	0 I ==== itro: .4 .0 .5 .4 .6 .1 .4 .3 .5 .7 .4 .3 .7 .4 .3	N ==== id c	D I	Pr 	=== s c 132 928 533 137 .7 58. 64.	=== onc 0.0 2.4 .5 .6 .8 0 8	ret		sec	Ma:	on kimun	n ten					
==== Mom (Un. C 2.3 4.7 7.0 9.4 10.1 11.1 14.1 16.	Inert T E R ====== ents ak its = P 5 0 5 0 25 75 10 45	A C ==== pout	T I ==== cen) Mn 0.0 166 665 125 178 195 225 267 302	0 I ==== itro: .4 .0 5.4 .6 .1 .5 .7 .4 .3 .5 .7 .4 .3 .5 .7 .4 .3 .5 .7 .4 .3 .5 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	N ==== id c	D I	Pr 	=== s c 1132 123 928 533 1137 .7 58. 64. 082	<pre>=== onc 0.0 2.4 .5 .6 .8 0 8 .7</pre>	ret		sec	Ma:	on kimun	n ten					
==== Mom (Un. C 2.3 4.7 7.0 9.4 10.1 11.1 14.1 16.1 8.1	Inert T E R ====== ents ak its = F 5 0 5 0 25 75 10 45 80	A C ==== pout	T I ==== cen) Mn 0.0 166 665 125 178 195 225 267 302 329	0 I ==== itro: .4 .0 5.4 .6.1 .5.7 .4.3 .1.1 .4.0	N ==== id c	D I	Pr 	=== n 1322 123 928 533 137 .7 58. 64. 082 504	=== onc 0.0 2.4 .5 .6 .8 0 8 .7 .1	ret		sec	Max Pu:	on kimun	ı ten	a	o 1			
==== Mom (Un. C 2.3 4.7 7.0 9.4 10.1 11.1 14.1 16.	Inert T E R ====== ents ak its = F 5 0 5 0 25 75 10 45 80 70	A C ==== pout	T I ==== cen) Mn 0.0 166 665 125 178 195 225 267 302 329 346	0 I ==== itro: .4 .0 5.4 .6 .1 .5 .7 .4 .3 .5 .7 .4 .3 .5 .7 .4 .3 .5 .7 .4 .3 .5 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	N ==== id c	D I	Pr 	=== s c 1132 123 928 533 1137 .7 58. 64. 082	=== onc 0.0 2.4 .5 .6 .8 0 8 .7 .1 .1	ret		sec	Max Pu:	on kimun	ı ten		o 1			


SLENDERNE	CALCULATION № 3628.5 3617.1 3542.2 3428.9 3270.9 3073.4 2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ====================================	2718.4 2820.9 3287.9 3726.4 4149.3 4546.8 4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	_ REVIEWER	Bob Matthews Balanced strain	date <u>10/31/2</u> date	
25.35 25.85 28.20 30.55 32.90 35.25 37.60 39.95 42.30 44.65 47.00 S L E N D ======= SLENDERNE	3628.5 3617.1 3542.2 3428.9 3270.9 3073.4 2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E S PER AASHTO LR	2718.4 2820.9 3287.9 3726.4 4149.3 4546.8 4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	-]] S	Maximum compression	_ DATE	
25.85 28.20 30.55 32.90 35.25 37.60 39.95 42.30 44.65 47.00 S L E N D ======= SLENDERNE	3617.1 3542.2 3428.9 3270.9 3073.4 2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	2820.9 3287.9 3726.4 4149.3 4546.8 4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	S	Maximum compression		
25.85 28.20 30.55 32.90 35.25 37.60 39.95 42.30 44.65 47.00 S L E N D ======= SLENDERNE	3617.1 3542.2 3428.9 3270.9 3073.4 2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	2820.9 3287.9 3726.4 4149.3 4546.8 4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	S	Maximum compression		
28.20 30.55 32.90 35.25 37.60 39.95 42.30 44.65 47.00 S L E N D ======= SLENDERNE	3542.2 3428.9 3270.9 3073.4 2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	3287.9 3726.4 4149.3 4546.8 4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	S			
30.55 32.90 35.25 37.60 39.95 42.30 44.65 47.00 S L E N D ===================================	3428.9 3270.9 3073.4 2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	3726.4 4149.3 4546.8 4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	S			
32.90 35.25 37.60 39.95 42.30 44.65 47.00 S L E N D ===================================	3270.9 3073.4 2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	4149.3 4546.8 4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	S			
35.25 37.60 39.95 42.30 44.65 47.00 S L E N D ======= SLENDERNE	3073.4 2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	4546.8 4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	S			
37.60 39.95 42.30 44.65 47.00 S L E N D ======== SLENDERNE	2832.5 2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	4933.5 5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	S			
39.95 42.30 44.65 47.00 S L E N D ===================================	2554.0 2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	5301.8 5643.6 5969.8 6262.4 6288.1 F F E C T	S			
42.30 44.65 47.00 S L E N D ======== SLENDERNE	2248.2 1909.7 1560.4 0.0 E R N E S S E ===============================	5643.6 5969.8 6262.4 6288.1 F F E C T	S			
44.65 47.00 S L E N D ======= SLENDERNE	1909.7 1560.4 0.0 E R N E S S E SS PER AASHTO LR	5969.8 6262.4 6288.1 F F E C T	S			
47.00 S L E N D ======= SLENDERNE	1560.4 0.0 E R N E S S E ===============================	6262.4 6288.1 F F E C T	S			
S L E N D ======= SLENDERNE	0.0 ERNESS E SSPER AASHTO LR	6288.1 F F E C T =======	S			
SLENDERNE	ERNESS E	F F E C T =======	S			
SLENDERNE	SS PER AASHTO LR		-			
SLENDERNE	SS PER AASHTO LR		=======	=======		
		FD (2004):				
		FD (2004):				
LOAD	CONDITION 1.	10 (2001)				
LOAD						
	CONDITION 1:					
	Pc = 49	69.3				
	r = 12					
	kl/r = 55					
	kl/r limit = 34	.0				
	T		G 0	COO		
	Equivalent mome					
	Non-sway magnif					
	Sway magnificat Magnified momen			12.0		
	Magninieu momen		- 5.	12.0		
SECTI	ON ANALY	SIS				
	===================		=========	=======		
(Units =	K-ft)					
LOAD COND	ITION NO 1					
		= 1386.1				
		= 0.750				
		= 2597.9				
		= 512.0				
Magn	ified moment	= 512.0 < 2	598 Okay			

		SHEET	<u>5-6</u> of	
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	date 10/31/2007
JOB No.	CALCULATION No.	REVIEWER		DATE
•	Check column slenderness effects for seismic lo	oads (SDC	4.2)	
	Slenderness effects can be ignored if $P\Delta$ < 0.2M	D		
	$P_{d}\Delta$ = 467 x 20.7 / 12 = 806 k-ft P_{d} = Axial compression load in column d 0.2 M _p = 0.2 x 2991 = 598 k-ft < 806 k-ft,			
	The effects of $P\Delta$ on the demand displacement of time-history analysis. The effects of $P\Delta$ on the of (pushover) analysis with SAP2000. For actual of reduce the deflection and increase the plastic m the global and local seismic analysis. For the pu- be included.	capacity ca lesign, the oment cap	n be included in the non column reinforcing woul pacity. This would requir	linear static ld be increased to e an iteration to
•	Column transverse reinforcing requirements for 5.10.6	non-seism	ic loads are shown in LF	RFD 5.7.4.6, 5.8 &
	 Minimum ratio of hoop reinforcement (LR 	FD 5.7.4.6)	
	$p_s = 4 \times A_b / (D_r \times s) > 0.45[A_g/A_c - 1](f'_o/f_s)$	_{rh})		
	A_c = Area of core measured to or	utside diar	neter of hoop	
	$p_s = 4 \times 0.6 / (40 \times 3) = 0.02 > 0.45[(48)^2]$	/(41) ² - 1](-	4 / 60) = 0.011 Okay	
	 Manual calculations for shear strength us 	e (LRFD 5	.8, C5.8.2.9)	
	Manual calculations using modified comp column transverse reinforcing for non-seis performing this analysis, but this program	smic loads	. Response 2000 is cap	
	effective width $b_v = D$			
	$d_v = M_n / (A_s f_y)$ where M_n ignores axial los or	ad and A_s	is one-half longitudinal re	einforcement
	$d_v = 0.9(D / 2 + D_r / \pi)$			
	$D/2$ D_r D_r $D_r/2$	c ← c ← r		

Figure C5.8.2.9-2 Illustration of Terms b_v , d_v and d_e for Circular Sections.

Refer to the course notes on LRFD Shear Design for details of manual calculations.

		SHEET	5-7 _{0F}	
	BENT DESIGN		Bob Matthews	date10/31/2007
). <u>-</u>	CALCULATION No.	REVIEWER		DATE
	 Detailing requirements are shown in LRF 	D 5.10.6		
	1. Minimum bar size is #3			
	 Clear spacing is 1 inch or 1.33 x d_b Splice requirements for spirals 			
•	Column transverse reinforcing requirements for 5.10.11 and Caltrans SDC 3.6 & 3.8	seismic lo	ads (ductile columns) a	re shown in LRFD
	Since this column is in a high seismic zone, LR requirements for ductile columns. Namely, that			
	overstrength moment. SDC requirements are s			
	 Minimum ratio of hoop reinforcement (SI 	DC 3.6.5.2)		
	A _v > 0.025 (D' x s / f _{yh})			
	A _v = 0.025 x 40 x 3 / 60 = 0.05 < 0.6 Ok	ay		
	 Manual calculations for shear strength (S 	SDC 3.6)		
	Typically review max and min axial load Check overstrength shear $V_o = 148$ kips			
	$V_{s} = \pi \ x \ A_{b} \ x \ f_{vh} \ x \ D' \ / \ 2s = 3.1416 \ x \ 0.6$ $V_{s} < 8 \ x \ (f'_{c} \)^{1/2} \ 0.8 \ x \ A_{g} = 8 \ x \ (4000)^{1/2} \ x$	x 60 x 40 / 0.8 x 1810	(2 x 3) = 754 kips / 1000 = 733 kips (con	trols)
	$V_{c} => F_{1} \times F_{2} \times 2(f'_{c})^{1/2} \times 0.8 \times A_{g} < 4(f'_{c})^{1/2} => 0.3 < p_{s} \times f_{yh} / 0.15 + 3.67 - \mu_{d} < 3000$		g	
	$F_2 => 1 + P_c / (2000 \times A_g) < 1.5$			
	μ_d = Ductility demand ratio (x) = 24.0 / 4 p _s = Ratio of hoop reinforcement = 4 x 0	.6 = 5.2 .6 / (40 x 3) = 0.02	
	$V_c = 3 \times 1.26 \times (4000)^{1/2} \times 0.8 \times 1810 / 1$	000 = 346	kips	
	$\phi(V_c + V_s) = 0.85(1079) = 917 > 148 \text{ Ok}$	ау		
	 Detailing requirements are shown in SD0 	C 8.2.5		
	Spacing < D/5 or 6 d _b or 8" 6 x 0.875 = 5.25 > 3 Okay			
•	Column local ductility requirements (SDC 3.1.4	!)		
	Local ductility = 5.4 > 3.0 Okay			

		SHEET	5-9 of	
B TITLE BENT DESIGN		ORIGINATOR	Bob Matthews	date <u>10/31/2007</u>
B No		REVIEWER		DATE
5.3 BENT CAP	ore queilable to perform bon	t oon dooig		
• Several programs	are available to perform ben	t cap desig	h as shown below.	
Program	Description			
SAP2000	General finite element pro			
RCPIER	Program designed specific program does not include Caltrans SDC requiremen effects of most of the bent	the Caltrar ts, but still	s amendments to LRFD) or the
REBEAM	Reinforced concrete beam		ogram	
REBEAM will be us	ed for bent cap design.			
longitudinol distribution rei BO-5 or BO-5 5-10	typ #16 @ 250 75 Extend to edge of de 915 915 915 * • * • • • * • • •	-#32 cont + (11 bundles		#32 tot 7. owered to however, t exceed

		SHEET	5-10 of		
ΓLE	BENT DESIGN	ORIGINATOR	Bob Matthews	DATE	10/ <u>31/200</u>
	CALCULATION No.	REVIEWER		DATE	
•	Bent cap capacity for non-seismic loads is base	ed on LRFD) 5.		
	Check negative moment and shear capability an		ntroi		
	$V_f = 732 \text{ kips}$				
	M _f = 2778 k-ft M _s = 1271 k-ft				
ہ ہ	* * * * * * * * * * * * * * * * * *	* * * * *	* * * * *		
د بر		ΔM	*		
ł			*		
¥	OUIPUI DAIA		*		
اد اد	* * * * * * * * * * * * * * * * * * *	· · · · ·	г т т т т *		
-		/22/07, 2			
`		, _, _			
C	Output file = nonseismic.out				
ç	Shear and moment review problem				
_					
	DESIGN CRITERIA				
-					
	Code = AASHTO LRFD (2004)	_			
τ	Jnits = English (pounds, inches - she	ear and r	noments in kip-ft)		
ç	STRENGTH REDUCTION AND RESISTANCE FAC	CTORS:			
		0	0.0		
	Flexure reduction factor Shear reduction factor	= 0			
	Concrete resistance factor				
	Reinforcing resistance factor	= 1	.00		
ç	STRESS BLOCK:				
2	JIRESS BLOCK.				
	Ratio of average concrete streng				
	Ratio of depth of compression b				
	Maximum concrete strain	= 0	.0030		
1	ATERIAL PROPERTIES	S			
=			======		
	Concrete compressive strength	= 40	200		
	Concrete modulus of elasticity		.6400E+06		
	Concrete modulus of rupture	= 48			
	Reinforcing yield strength	= 60	0000		
	Reinforcing modulus of elasticit	-			
	Modular ratio	= 8			
	Maximum aggregate size	1	.000		

		SHEET	5-11 OF	:
E BENT DESIGN		ORIGINATO	R Bob Matthews	date 10/31/200
	CALCULATION No.	REVIEWER		DATE
REINFORC	ING STE	EL		
			=======	
Tensile rei	nf area	= 27.94		
	ensile reinf			
Compressive	reinf area	= 27.94		
	mpressive rei			
Shear reinf	-	= 2.64		
Shear reinf		= 2.04 = 6		
Shear reini	spacing	= 0		
DESIGN L	OADS			
		=============	=======	
	7 . 1			
-	ltimate) mome			
	vice load mom			
	vice load mom			
Factored (u	ltimate) shea	r = 732		
SECTION	PROPERT	TES		
=======================================	-		=======	
RECTANGULAR SECT	ION:			
Width = 72				
Height = 54				
Hergiic - 54				
PROPERTIES:				
Cross momor	t of inortio	= 9.4478E+	0.5	
		= 3.4992E+		
		= 2.7000E+		
		a = 3.3802E+		
EIIective m	oment of iner	tia = $9.4478E+$	05	
MOMENT R	EVIEW C	ALCULAT	IONS	
			=======	
MINIMUM REINFORC	ING:			
1 2 * Crack	ing momont	= 1.6796E+0	2	
Design mome				
Design mome	ΠL	= 2.7780E+0	3	
MAXIMUM REINFORC	ING:			
c/d		= 1.4951E-0	1	
- /			—	
Maximum c/c		= 4.2000E-0	1	
MOMENT CAPABILIT	'Y :			
Ultimate mo	ment capabili	ty = 5.6071E +	03 > 2778 Okay	
		= 6.1252E+		
Stress in c	ompression st	eel = 9.7329E+	03	
	1			

		SHEET	5-12 of	
ITLE BENT DESIGN		ORIGINATOR E	ob Matthews	date <u>10/31/2007</u>
o CALCULAT	ION No	REVIEWER		DATE
SERVICE LOAD STRESS:				
Morrimum atool at	- 1 259	0		
Maximum steel st Minimum steel st				
Maximum concrete	stress = 5.431	6E+02		
Minimum concrete	stress = 0.000	0E+00		
CRACK CONTROL:				
Concrete cover				
Effective tensior Exposure factor				
Maximum steel st	ress = 1.2	588E+04		
Allowable crackin			12588 Okay	
SHEAR REVIE	WCALCI	т, а т т О	NS	
		-		
CONCRETE SHEAR CAPABII	Τ.Π.Χ :			
Effective shear o	lepth = 4.	4596E+01		
Concrete shear st	trength $= 4$.	0757E+02		
Longitudinal s	strain = 7 .	6762E-04		
Theta Beta		6400E+01 2300E+00		
	- 2.	230001.00		
SHEAR REINFORCING:				
Min shear reinf a	area = 4.	5537E-01		
Max shear reinf s	spacing = 2.	4000E+01		
Shear reinf strer	ngth = 1.	4372E+03		
Shear reinf stren Ultimate shear ca	apability = 1.	8448E+03 >	• 732 Okay	
Maximum shear cap	pability = 2.	8898E+03		
MINIMUM LONGITUDINAL 7	CENSILE REINFOR	CING:		
Minimum reinf are	ea = 2.	3036E+01		

	s	SHEET	5-13 of		
TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	date10/31/20	007
No.	CALCULATION No F	REVIEWER		DATE	
٠	Bent cap capacity for seismic loads is based on L	.RFD 5 a	nd Caltrans Amendment	S	
	ϕ = 1.0 (Caltrans Amendments 5.5.5)				
	Check negative moment and shear capability				
	V _f = 797 kips M _f = 3986 k-ft				
ł	* * * * * * * * * * * * * * * * * * *	* * * *	* * * * *		
*			*		
*	PROGRAM REBEA	М	*		
*	OUTPUT DATA		*		
*		* * * *	* * * * * * *		
((Version 5.1) 10/2	2/07, 2	2:45 pm		
C	Output file = seismic.out				
S	Shear and moment review problem				
г	DESIGN CRITERIA				
=		======	======		
	Code = AASHTO LRFD (2004) Jnits = English (pounds, inches - shea	r and r	moments in kip-ft)		
5	STRENGTH REDUCTION AND RESISTANCE FACT	ORS:			
	Flexure reduction factor	= 1	.00		
	Shear reduction factor	= 1	.00		
	Concrete resistance factor	= 1			
	Reinforcing resistance factor	= 1	.00		
S	STRESS BLOCK:				
	Ratio of average concrete strengt	h = 0	8500		
	Ratio of depth of compression blo				
	Maximum concrete strain		.0030		
N	ATERIAL PROPERTIES				
=		======	======		
	Concrete compressive strength	= 40			
	Concrete modulus of elasticity	= 3	.6400E+06		
	Concrete modulus of rupture	= 48	80		
		= 60			
	Peinforging modulus of alastisity		 ノロロロエロノ 		
	Reinforcing modulus of elasticity Modular ratio				
	Reinforcing modulus of elasticity Modular ratio Maximum aggregate size	= 8			

	SHEET	5-14 of		
E BENT DESIGN	ORIGINATOR	Bob Matthews	DATE	10/31/20
CALCULATION No.	REVIEWER		DATE	
REINFORCING STEEL				
Tensile reinf area = 27	0.4			
Depth to tensile reinf = 48				
Compressive reinf area = 27	ο <i>ι</i>			
Depth to compressive reinf = 6.4				
Shear reinf area = 2.6				
Shear reinf spacing = 6	71			
DESIGN LOADS	-=======			
Factored (ultimate) moment = 39	986			
Maximum service load moment = 0				
Minimum service load moment = 0	~ ¬			
Factored (ultimate) shear = 79	97			
SECTION PROPERTIES				
	========	=======		
RECTANGULAR SECTION:				
Width = 72				
Height = 54				
11019110 01				
PROPERTIES:				
Gross moment of inertia = 9	.4478E+0	5		
Gross section modulus = 3				
Distance to neutral axis = 2				
Cracked moment of inertia = 3				
MOMENT REVIEW CALCU				
MINIMUM REINFORCING:				
1.2 * Cracking moment = 1.6	5796E+03			
	9860E+03			
MAXIMUM REINFORCING:				
c/d = 1.4	4951E-01			
	2000E-01			
MOMENT CAPABILITY:				
Ultimate moment capability = 6	2201E+0	2 > 2986 Okav		
Stress block depth = 6	.1252E+0	\cap		

CALCULATION No.		ORIGINATOR	Bob Matthews	date <u>10/31/20</u>
CALCULATION No.				
		REVIEWER		DATE
AR REVIEW CAL	СТГ	ATI) N S	
	=====	======	=======	
ETE SHEAR CAPABILITY:				
REINFORCING:				
Min shear reinf area	= 4.5	537E-01		
Max shear reinf spacing	= 2.4	000E+01		
Shear reinf strength	= 1.5	969E+03		
Ultimate shear capability	= 2.0	498E+03	> 797 Okay	
Maximum shear capability	= 3.2	109E+03		
UM LONGITUDINAL TENSILE RE	INFORC	ING:		
Minimum reinf area	= 2.6	885E+01		
	ETE SHEAR CAPABILITY: Effective shear depth Concrete shear strength Longitudinal strain Theta Beta REINFORCING: Min shear reinf area Max shear reinf spacing Shear reinf strength Ultimate shear capability Maximum shear capability UM LONGITUDINAL TENSILE RE	ETE SHEAR CAPABILITY: Effective shear depth = 4.4 Concrete shear strength = 4.5 Longitudinal strain = 9.9 Theta = 3.6 Beta = 2.2 REINFORCING: Min shear reinf area = 4.5 Max shear reinf spacing = 2.4 Shear reinf strength = 1.5 Ultimate shear capability = 2.0 Maximum shear capability = 3.2 UM LONGITUDINAL TENSILE REINFORC	ETE SHEAR CAPABILITY: Effective shear depth = 4.4596E+01 Concrete shear strength = 4.5286E+02 Longitudinal strain = 9.9540E-04 Theta = 3.6400E+01 Beta = 2.2300E+00 REINFORCING: Min shear reinf area = 4.5537E-01 Max shear reinf spacing = 2.4000E+01 Shear reinf strength = 1.5969E+03	Effective shear depth = 4.4596E+01 Concrete shear strength = 4.5286E+02 Longitudinal strain = 9.9540E-04 Theta = 3.6400E+01 Beta = 2.2300E+00 REINFORCING: Min shear reinf area = 4.5537E-01 Max shear reinf spacing = 2.4000E+01 Shear reinf strength = 1.5969E+03 Ultimate shear capability = 2.0498E+03 > 797 Okay Maximum shear capability = 3.2109E+03 UM LONGITUDINAL TENSILE REINFORCING:

			SHEET	5-16 OF	
JOB TITLE	BENT DESIGN		ORIGINATOR	Bob Matthews	date 10/31/2007
JOB No.	CALCULATION N	0	REVIEWER		DATE
•	Check column reinforcement de $L_{db} > 1.25A_b f_y/(f'_c)^{1/2} = 1.25 \times 1.00$ Can reduce by 0.75 enclosed w Increase by 25% for high seism Embed column reinforcement as (SDC 8.2.1) Depth to bottom of top of 24 x 1.128 = 27" 43.3" provided Okay Check side face reinforcement Crack control reinf for shear A _s = 0.003 x 72 x 7 = 1.5 in ² < 2.0 in Construction reinforcement (Ca	evelopment in ber $0 \ge 60 / (4)^{1/2} = 37$ ith spirals => 28.1 ic region => 35.1" is close to far end cap reinforcement (LRFD 5.8.3.4.2) > 0.003b _v s _x ² (2 #9) provided altrans Bridge Des	nt cap (LR .5" (LRFD (LRFD 5. of cap as = 54 - 4.3 okay okay	FD 5.11 & 5.10.11.4 5.11.2.1) 10.11.4.3) practical, but not les 3 - 2 x 1.4 = 46.9" ce 2.33.0)	.3 and SDC 8.2.1) s than $24d_b$
	It is Caltrans practice to place or reinforcement is designed to can side of the cap using a load fact Construction j	rry the dead load o or of 1.3 with f'c =	of the cap	and 10' of the super	
		Å.			
	10'	BENT WIDTH	-	10'	
	Depth to construction jo Depth to construction re Bottom slab thickness = Bottom slab width = 39. Total girder thickness =	einforcement = 35. : 0.51' 5'			

BENT DESIGN ORIGNATOR Bob Matthews Date		s	SHEET	5-17 _{0F}	
		BENT DESIGN c	ORIGINATOR	Bob Matthews	date 10/31/200
Girder reaction = 0.15 x 20 (6.3 x (3.5251) + 39.5 x 0.51) = 117 kips M = 1.3(117 x 2.3 + 0.15 x 6 x 3.52 (2.3) ² /2 + 0.15 x 6 x 5 x 1 x 4.8) = 389 k-ft Use REBEAM to check (7) #10 bars, A _a = 8.89 in ² P R O G R A M R E B E A M OUTPUT DATA OUTPUT DATA (version 5) 10/19/07, 4:57 pm Output file = construction.out Moment review problem D E S I G N C R I T E R I A Code = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 MAXIE R I A L P R O P E R T I E S Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E106 Concrete modulus of elasticity = 2.900E+07 Modular ratio = 10					
M = 1.3(117 x 2.3 + 0.15 x 6 x 3.52 (2.3) ² /2 + 0.15 x 6 x 5 x 1 x 4.8) = 389 k-ft Use REBEAM to check (7) #10 bars, A ₈ = 8.89 in ² 					
M = 1.3(117 x 2.3 + 0.15 x 6 x 3.52 (2.3) ² /2 + 0.15 x 6 x 5 x 1 x 4.8) = 389 k-ft Use REBEAM to check (7) #10 bars, A ₈ = 8.89 in ² 		Circler respects $-0.15 \times 20.63 \times (2.52)$	E1) + 20	$5 \times 0.51) - 117$ kinc	
Use REBEAM to check (7) #10 bars, A _s = 8.89 m ² 		$M = 1.3(117 \times 2.3 + 0.15 \times 6 \times 3.52 (2.3)^2)^{-1}$	2 + 0.15	x 6 x 5 x 1 x 4.8 = 38	39 k-ft
<pre>************************************</pre>		· · · ·	•		
<pre>* PROGRAM REBEAM * * OUTPUT DATA * * OUTPUT DATA * * ********************************</pre>	I	Use REBEAM to check (7) #10 bars, $A_s = 8.89$ in	-		
<pre>* OUTPUT DATA * * * OUTPUT DATA * * * (Version 5) 10/19/07, 4:57 pm Output file = construction.out Moment review problem D E S I G N C R I T E R I A</pre>	*	* * * * * * * * * * * * * * * * * *	* * *	* * * * *	
<pre>* OUTPUT DATA * * * OUTPUT DATA * * * (Version 5) 10/19/07, 4:57 pm Output file = construction.out Moment review problem D E S I G N C R I T E R I A</pre>	*			*	
<pre>v OUTPUT DATA * * * (Version 5) 10/19/07, 4:57 pm Output file = construction.out Moment review problem D E S I G N C R I T E R I A</pre>		PROGRAM REBEA	М		
<pre>* * *********************************</pre>	*	ΟΙΙΤΡΙΙΤ ΔΑΤΑ			
<pre>(Version 5) 10/19/07, 4:57 pm Output file = construction.out Moment review problem DESIGN CRITERIA </pre>	*			*	
Output file = construction.out Moment review problem D E S I G N C R I T E R I A	*			* * * * *	
Moment review problem DESIGN CRITERIA Code = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E+06 Concrete modulus of rupture = 379.5 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.900E+07 Modular ratio = 10	(V	<i>J</i> ersion 5) 10/1	9/07,	4:57 pm	
Moment review problem DESIGN CRITERIA Code = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E+06 Concrete modulus of rupture = 379.5 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.900E+07 Modular ratio = 10	Οť	utput file = construction.out			
<pre>DESIGN CRITERIA DESIGN CRITERIA Code = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S </pre>		-			
Code = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S 	Мс	oment review problem			
Code = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S 	D	ESTGN CRITERIA			
<pre>Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S</pre>	==		=======	======	
<pre>Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S</pre>	~				
STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S			~ and ·	momonta in kin-f	έ +
<pre>Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E+06 Concrete modulus of rupture = 379.5 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 10</pre>	01	IIIS - Eligitali (pounda), inches anea	I and i		()
<pre>Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES ====================================</pre>	ST	FRENGTH REDUCTION AND RESISTANCE FACT	ORS:		
<pre>Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES ====================================</pre>		Elexure reduction factor	= 0	90	
Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E+06 Concrete modulus of rupture = 379.5 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 10					
<pre>STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E+06 Concrete modulus of rupture = 379.5 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 10</pre>					
Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES 		Reinforcing resistance factor	= 1	.00	
Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES 	SI	TRESS BLOCK:			
Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E+06 Concrete modulus of rupture = 379.5 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 10	~ -				
Maximum concrete strain= 0.0030MATERIAL PROPERTIESConcrete compressive strength Concrete modulus of elasticity= 2500 2.8777E+06Concrete modulus of elasticity Concrete modulus of rupture Reinforcing yield strength Reinforcing modulus of elasticity Elasticity = 2.9000E+07 = 10					
MATERIAL PROPERTIES Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E+06 Concrete modulus of rupture = 379.5 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 10					
Concrete compressive strength = 2500 Concrete modulus of elasticity = 2.8777E+06 Concrete modulus of rupture = 379.5 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 10		Maximum concrete strain	= 0	.0030	
Concrete compressive strength= 2500Concrete modulus of elasticity= 2.8777E+06Concrete modulus of rupture= 379.5Reinforcing yield strength= 60000Reinforcing modulus of elasticity= 2.9000E+07Modular ratio= 10	М	ATERIAL PROPERTIES			
Concrete modulus of elasticity= 2.8777E+06Concrete modulus of rupture= 379.5Reinforcing yield strength= 60000Reinforcing modulus of elasticity= 2.9000E+07Modular ratio= 10	==		======;	======	
Concrete modulus of elasticity= 2.8777E+06Concrete modulus of rupture= 379.5Reinforcing yield strength= 60000Reinforcing modulus of elasticity= 2.9000E+07Modular ratio= 10		Congrete compressive strength	= 2	500	
Concrete modulus of rupture= 379.5Reinforcing yield strength= 60000Reinforcing modulus of elasticity= 2.9000E+07Modular ratio= 10					
Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 10					
Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 10		-			
Modular ratio = 10					
Maximum aggregate size = 1.000					
		Maximum aggregate size	= 1	.000	

			SHEET		5-18 of		
E BENT DESIGN	<u>i</u>		ORIGINATOR	Bob Matth	ews	DATE	10/31/20
	CALCULATION No.		REVIEWER			DATE	
REINFO							
	=======================================	:======	======				
		= 8.8					
	o tensile reinf		5				
	sive reinf area						
	o compressive rein						
		= 0					
Shear r	einf spacing	= 0					
D E S I G N	LOADS		========	=======			
	d (ultimate) momen		9				
	service load mome						
	service load mome						
Factore	d (ultimate) shear	: = 0					
٩ ټ ۲ ۳ ۲ ۵	N PROPERT	тыс					
			========				
RECTANGULAR	SECTION:						
Width	= 72						
Height							
	- 12.5						
PROPERTIES:							
Gross m	oment of inertia	= 4.	5412E+0	5			
		= 2.					
	e to neutral axis						
	moment of inertia						
			·				
M O M E N T ========	REVIEW C	A L C U					
MINIMUM REIN	FORCING:						
1.2 * C	racking moment	= 8.1	484E+02				
Design		= 5.1	80/11+02				
		= 5.1	.867E+02				
Design MAXIMUM REIN							
Design	FORCING:	= 1.1	554E-01				
Design MAXIMUM REIN c/d	WFORCING: a c/d	= 1.1	554E-01				
Design MAXIMUM REIN c/d Maximum MOMENT CAPAB	FORCING: a c/d BILITY:	= 1.1 = 4.2	554E-01 000E-01	2 > 510	Okast		
Design MAXIMUM REIN c/d Maximum MOMENT CAPAB Ultimat	WFORCING: a c/d	= 1.1 = 4.2	554E-01 000E-01		Okay		

		SHEET	5-19 of	
JOB TITLE BENT DESIGN		originator BO	b Matthews	date 10/31/2007
JOB No.	CALCULATION No.	REVIEWER		DATE

 $L_{db} > 1.25 A_b f_y / (f'_c)^{1/2} = 1.25 x 1.27 x 60 / (4)^{1/2} = 48"$ Increase by 40% for top reinforcement => 67"

Bottom reinforcement must be developed at least 48" from inside face of column for seismic opening moment. Actual length = 75" > 48" Okay

Top reinforcement must be developed at least 67" from outside face of column for seismic closing moment. Actual length = 84" > 67" Okay

		SHEET	5-20	OF		
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews		DATE	10/31/2007
JOB No.	CALCULATION No.	REVIEWER			DATE	
•	Check joint shear (SDC 7.4)					
	Calculate principal stresses in the joint		τ./			
	$p_{t} = \frac{(f_{h} + f_{v})}{2} - \sqrt{\left(\frac{f_{h} - f_{v}}{2}\right)^{2} + v_{jv}^{2}}$	$v_{jv} = \frac{2}{3}$	A_{jv} $A_{ac} \times B_{cap}$			
	$p_{c} = \frac{(f_{h} + f_{v})}{2} + \sqrt{\left(\frac{f_{h} - f_{v}}{2}\right)^{2} + v_{jv}^{2}}$	$f_v = -$	-			
		$A_{jh} =$	$(D_c + D_s) \times B_{cap}$			
		$f_h = $	$\frac{P_b}{B_{con} \times D_z}$			

Where:

 A_{jh} = The effective horizontal joint area

 A_{jv} = The effective vertical joint area

 $B_{cap} = \text{Bent cap width}$

 D_c = Cross-sectional dimension of column in the direction of bending

 D_s = Depth of superstructure at the bent cap

lac = Length of column reinforcement embedded into the bent cap

 P_c = The column axial force including the effects of overturning

 P_b = The beam axial force at the center of the joint including prestressing

 T_c = The column tensile force defined as M_o/h , where *h* is the distance from c.g. of tensile force to c.g. of compressive force on the section, or alternatively T_c may be obtained from the moment curvature analysis of the cross section.

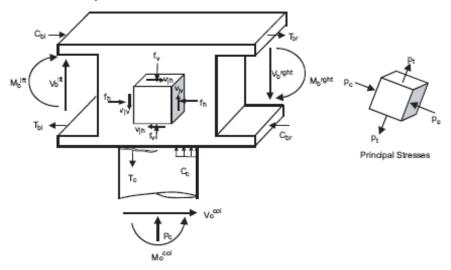
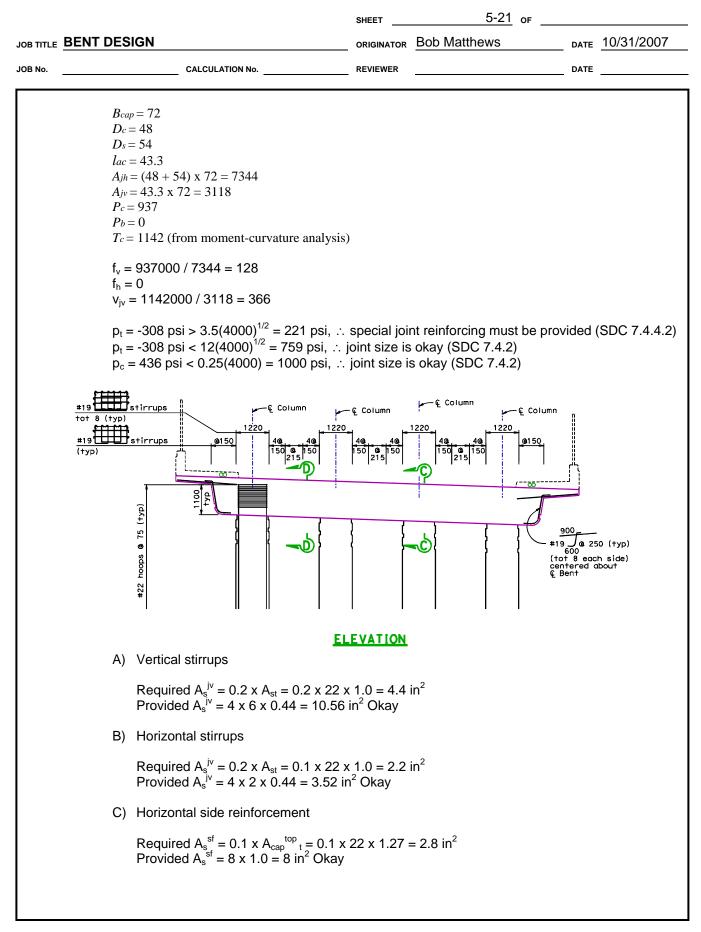



Figure 7.6 Joint Shear Stresses in T Joints

			SHEET	5-22 ог	
JOB TITLE	BENT DES	BIGN	ORIGINATOR	Bob Matthews	date <u>10/31/2007</u>
JOB No.		CALCULATION No.			DATE
	D)	J-Dowels (not required for skew < 20	0 degrees)		
	E)	Transverse reinforcement			
		$\begin{array}{l} \mbox{Required} \rho_{s} = 0.4 \; x \; A_{st} / {I_{ac}}^{2} = 0.4 \; x \\ \mbox{Provided} \rho_{s} = 0.02 \; Okay \end{array}$	22 / (43.3) ²	² = 0.0047	

L

ALCULATION No	ing design a ogram concre cally for ben the Caltrans the Caltrans to but still m t loadings. T <u>m the rest of</u> n design pro	both directions te analysis and design. amendments to LRFE hay be used to determin the footing analysis is of the bent model. gram	This O or the he the done on
e available to perform foot Description General finite element pro Program designed specifi program does not include Caltrans SDC requiremen effects of most of the bent a rigid model separate fro Reinforced concrete bean for footing design.	ing design a	both directions te analysis and design. amendments to LRFE hay be used to determin the footing analysis is of the bent model. gram	This O or the he the done on
Description General finite element pro Program designed specifi program does not include Caltrans SDC requirement effects of most of the bent a rigid model separate fro Reinforced concrete bean	egram concre cally for ben the Caltrans its, but still m t loadings. T m the rest of n design pro	both directions te at and hook not each intersection both directions te at and hook nd each intersection octing reinf within 2440 column (omit within mm of key reinf) #29 @ 150 #16 b locate around intersection	o or the he the done on
Description General finite element pro Program designed specifi program does not include Caltrans SDC requirement effects of most of the bent a rigid model separate fro Reinforced concrete bean	egram concre cally for ben the Caltrans its, but still m t loadings. T m the rest of n design pro	both directions te at and hook not each intersection both directions te at and hook nd each intersection octing reinf within 2440 column (omit within mm of key reinf) #29 @ 150 #16 b locate around intersection	o or the he the done on
General finite element pro Program designed specifi program does not include Caltrans SDC requiremen effects of most of the bent a rigid model separate fro Reinforced concrete bean for footing design.	cally for ben the Caltrans its, but still m t loadings. T <u>m the rest of</u> n design pro	both directions te and hook may be used to determine the footing analysis is of the bent model. gram	o or the he the done on
Program designed specifi program does not include Caltrans SDC requiremen effects of most of the bent a rigid model separate fro Reinforced concrete bean for footing design.	cally for ben the Caltrans its, but still m t loadings. T <u>m the rest of</u> n design pro	both directions te and hook may be used to determine the footing analysis is of the bent model. gram	o or the he the done on
program does not include Caltrans SDC requiremen effects of most of the bent a rigid model separate fro Reinforced concrete bean for footing design.	the Caltrans its, but still m t loadings. T <u>m the rest of</u> <u>n design pro</u>	both directions te at and hook nd each intersection column (omit within #29 @ 150 #16 b within column (omit within mm of key reinf)	o or the he the done on
Reinforced concrete bean	n design pro	both directions te at and hook nd each intersection ooting reinf within 2440 column (omit within mm of key reinf) #29 @ 150 #16 to locate around inters	ooth directions at and hook 1 alternate ections of
Column		te at and hook nd each intersection ooting reinf within 2440 column (omit within mm of key reinf) #29 @ 150 #16 b locate arounc inters	ooth directions at and hook 1 alternate ections of
All piles not shown FOOTING DE	#29 @ 300 ~	#29 L @ 150	
	All piles not shown	#29 @ 300 ~	→ → → → +29 @ 300 → → +29 @ 150 → All piles not shown

<pre>oBMe</pre>		SI	sheet 5-24 of				
<pre>• Footing capacity for non-seismic loads is based on LRFD 5. Check moment and shear capability for bottom reinforcement in the long direction. Nonseismic loads control in this direction. </pre>	TITLE	BENT DESIGN o	RIGINATOR	Bob Matthews	date <u>10/31/2007</u>		
Check moment and shear capability for bottom reinforcement in the long direction. Nonseismic loads control in this direction. V ₁ = 58.2 kips/ft W ₁ = 76.8 k-ft/ft PROGRAM REBEAM COUTPUT DATA COUTPUT DATA COUTPUT DATA COUTPUT file = nonseismic.out Shear and moment review problem D E S I G N C R I T E R I A Code = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L PROPERTIES Concrete compressive strength = 4000 Concrete modulus of elasticity = 3.64008+06 Concrete modulus of elasticity = 2.90002+07 Modular ratio = 8	No.	CALCULATION No R	EVIEWER		DATE		
Check moment and shear capability for bottom reinforcement in the long direction. Nonseismic loads control in this direction. V = 58.2 kips/ft M = 76.3 k-ft/ft P R O G R A M R E B E A M CUTPUT DATA CUTPUT DATA CUTPUT DATA CUTPUT DATA CUTPUT file = nonseismic.out Shear and moment review problem D E S I G N C R I T E R I A CODE = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 1.00 Reinforcing resistance factor = 1.00 STRESS ELOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 MAIT E R I A L P R O P E R T I E S Concrete reduction factor = 0.900 Shear reduction factor = 1.00 STRESS ELOCK: Ratio of average concrete strength = 0.8500 MAIT E R I A L P R O P E R T I E S 	•	Easting canacity for non-coismic loads is based or		6			
<pre>loads control in this direction. V_i = 58.2 kips/ft M_i = 76.8 k-ft/ft P R O G R A M R E B E A M COUTPUT DATA COUTPUT DATA COUTPUT DATA Coutput file = nonseismic.out Shear and moment review problem D E S I G N C R I T E R I A Code = AASHTO LRFD (2004) Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 MAIT E R I A L P R O P E R T I E S </pre>	•	Footing capacity for non-seismic loads is based of	ILKFD	5.			
<pre>M,=76.8 kft/ft</pre>			oforceme	ent in the long direction	1. Nonseismic		
<pre>* PROGRAM REBEAM * * PROGRAM REBEAM * * OUTPUT DATA * * * Version 5.1) 10/22/07, 2:20 pm Output file = nonseismic.out Shear and moment review problem DESIGN CRITERIA</pre>							
<pre>* OUTPUT DATA * * * OUTPUT DATA * * * * OUTPUT DATA * * * * * * * * * * * * * * * * * * *</pre>	*		* * *	* * * * *			
OUTPUT DATA * * <td< td=""><td>*</td><td>PROGRAM REBEAD</td><td>М</td><td>*</td><td></td></td<>	*	PROGRAM REBEAD	М	*			
<pre>* * * * * * * * * * * * * * * * * * *</pre>							
<pre>(Version 5.1) 10/22/07, 2:20 pm Output file = nonseismic.out Shear and moment review problem DESIGN CRITERIA </pre>	*			*			
Shear and moment review problem DESIGN CRITERIA 	*		* * * 2/07, :	* * * * * 2:20 pm			
DESIGN CRITERIA 	С	Output file = nonseismic.out					
<pre></pre>	S	Shear and moment review problem					
<pre></pre>	г						
<pre>Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S</pre>	=		======				
<pre>Units = English (pounds, inches - shear and moments in kip-ft) STRENGTH REDUCTION AND RESISTANCE FACTORS: Flexure reduction factor = 0.90 Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S</pre>	C	Code = AASHTO LRFD (2004)					
Flexure reduction factor= 0.90Shear reduction factor= 0.90Concrete resistance factor= 1.00Reinforcing resistance factor= 1.00STRESS BLOCK:			r and 1	moments in kip-ft	:)		
<pre>Shear reduction factor = 0.90 Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S </pre>	S	TRENGTH REDUCTION AND RESISTANCE FACTO	ORS:				
Concrete resistance factor = 1.00 Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S 		Flexure reduction factor	= 0	.90			
Reinforcing resistance factor = 1.00 STRESS BLOCK: Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S 							
Ratio of average concrete strength = 0.8500 Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 MATERIAL PROPERTIES 							
Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S Concrete compressive strength = 4000 Concrete modulus of elasticity = 3.6400E+06 Concrete modulus of rupture = 480 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 8	S	TRESS BLOCK:					
Ratio of depth of compression block = 0.8500 Maximum concrete strain = 0.0030 M A T E R I A L P R O P E R T I E S Concrete compressive strength = 4000 Concrete modulus of elasticity = 3.6400E+06 Concrete modulus of rupture = 480 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 8		Patio of average generate strength	0	8500			
MATERIAL PROPERTIES Concrete compressive strength = 4000 Concrete modulus of elasticity = 3.6400E+06 Concrete modulus of rupture = 480 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 8							
Concrete compressive strength = 4000 Concrete modulus of elasticity = 3.6400E+06 Concrete modulus of rupture = 480 Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 8		Maximum concrete strain	= 0	.0030			
Concrete modulus of elasticity= 3.6400E+06Concrete modulus of rupture= 480Reinforcing yield strength= 60000Reinforcing modulus of elasticity= 2.9000E+07Modular ratio= 8	M =						
Concrete modulus of elasticity= 3.6400E+06Concrete modulus of rupture= 480Reinforcing yield strength= 60000Reinforcing modulus of elasticity= 2.9000E+07Modular ratio= 8		Concrete compressive strength	= 4	000			
Reinforcing yield strength = 60000 Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 8		Concrete modulus of elasticity	= 3	.6400E+06			
Reinforcing modulus of elasticity = 2.9000E+07 Modular ratio = 8		-					
Modular ratio = 8							
Maximum aggregate size = 1.000							
		Maximum aggregate size	= 1	.000			

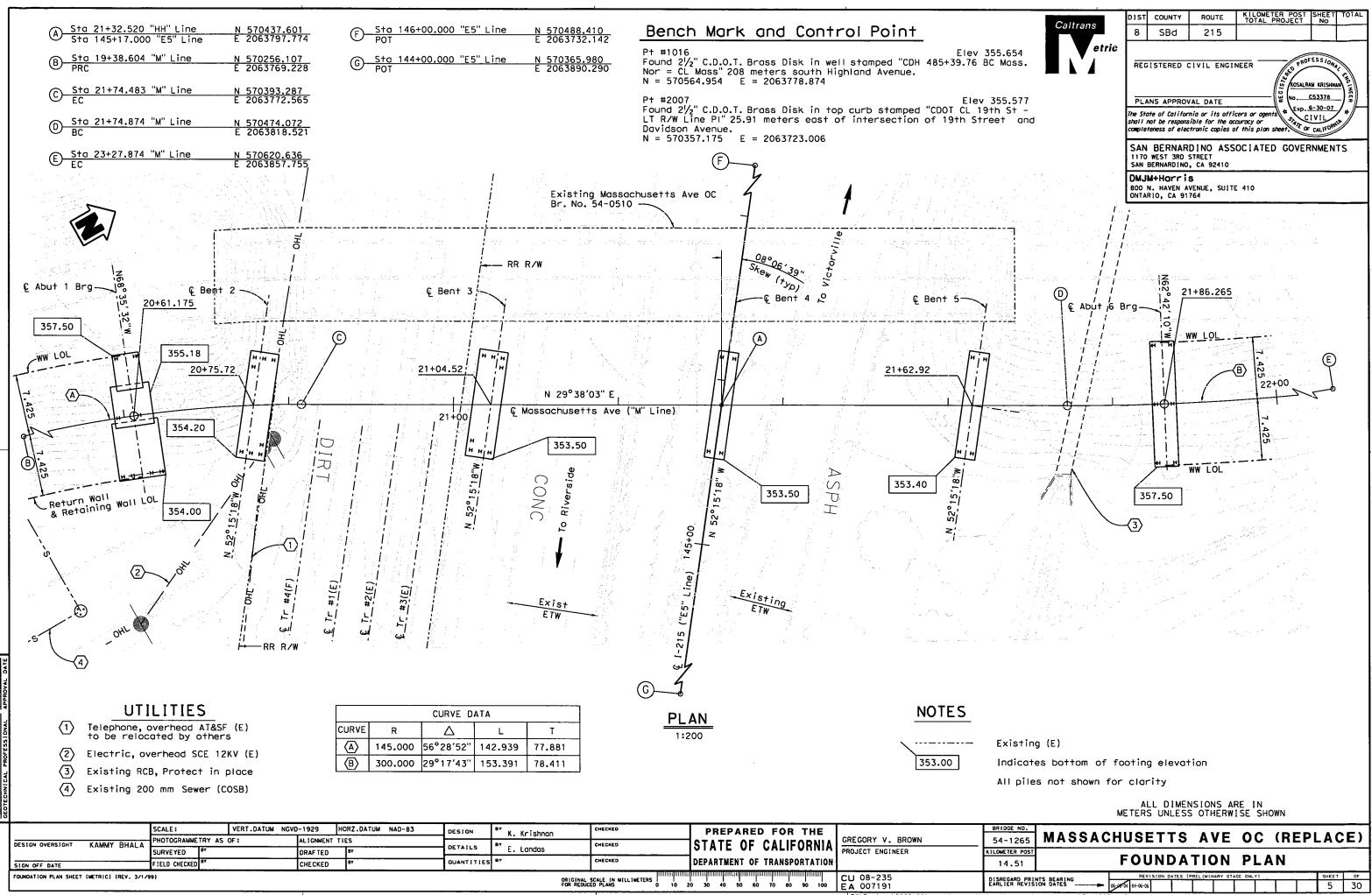
		SHEET	5-25 OF	
E BEN	NT DESIGN	ORIGINATOR	Bob Matthews	date <u>10/31/200</u>
	CALCULATION No.	REVIEWER		DATE
	INFORCING STEEL			
====		===========	======	
	Tensile reinf area =	: 1		
	Depth to tensile reinf =	42		
	Compressive reinf area =	÷ 0		
	Depth to compressive reinf =			
	Shear reinf area =			
	Shear reinf spacing =	6		
ΠE	SIGN LOADS			
		=======================================	======	
	Factored (ultimate) moment			
	Maximum service load moment			
	Minimum service load moment			
	Factored (ultimate) shear	= 58.2		
SE	CTION PROPERTIE	S		
====		=======================================	======	
RECI	CANGULAR SECTION:			
	Width = 12			
	Height = 48			
	11619110 - 10			
PROF	PERTIES:			
	Gross moment of inertia	= 1 1059E+0'	5	
	Gross section modulus			
	Distance to neutral axis			
	Cracked moment of inertia			
	MENT REVIEW CAL			
	•••••••••••••••••••••			
MINI	IMUM REINFORCING:			
	1.2 * Cracking moment =	2.2118E+02		
		1.0240E+02		
MAXI	IMUM REINFORCING:			
		4 11020 00		
	- , -	4.1193E-02		
	Maximum c/d =	4.2000E-01		
MOME	ENT CAPABILITY:			
		1 05000.0		
	Ultimate moment capability Stress block depth	= 1.8569E+0. = 1.4706E+00		

			SHEET	5-26	0F			
JOB TITL						date 10/31/2007		
JOB No.	CALCULATION No.				DATE	E		
	SHEAR REVIEW CAL							
	CONCRETE SHEAR CAPABILITY:							
		= 6.2 = 2.0 = 1.0 = 3.6	855E+01 013E+02					
	SHEAR REINFORCING:							
	Min shear reinf area Max shear reinf spacing	= 7.5 = 2.4	895E-02 000E+01					
	Shear reinf strength Ultimate shear capability Maximum shear capability	= 2.1	.901E+02	> 58.2 Okay				
	MINIMUM LONGITUDINAL TENSILE RE	INFORC	ING:					
	Minimum reinf area	= 1.1	445E+00					

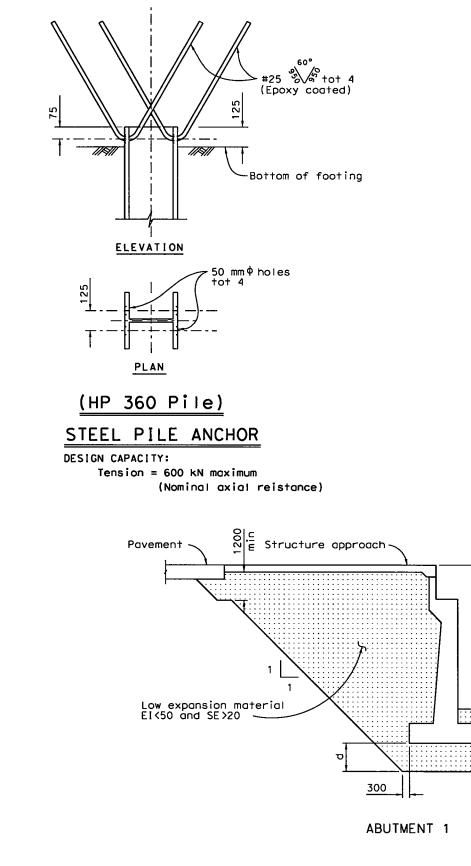
			5-27 of	·		
LE BEN	T DESIGN	ORIGINATOR	Bob Matthews	date 10/31/200		
	CALCULATION No.	REVIEWER		DATE		
• Foo	ting capacity for seismic loads is based or	LRFD 5 and	d Caltrans Amendme	ents		
φ = 1	.0 (Caltrans Amendments 5.5.5)					
contr	ck moment and shear capability for bottom ol in this direction. Expected material pro- ved negative margin of safety.					
	V _f = 53.3 kips/ft M _f = 235 k-ft/ft					
* * *	* * * * * * * * * * * * * *	* * * * *	* * * * *			
*			*			
*	PROGRAM REBE	AM	*			
*			*			
*	OUTPUT DATA		*			
* * *	* * * * * * * * * * * * * * *	* * * * *	* * * * *			
(Vero	sion 5.1) 10	0/22/07, 2	2:38 mm			
	at file = seismic.out					
Shear	and moment review problem					
	SIGN CRITERIA					
=====						
Code	= AASHTO LRFD (2004)					
Units	s = English (pounds, inches - sl	near and r	noments in kip-f	Et)		
STREN	IGTH REDUCTION AND RESISTANCE FA	ACTORS:				
		ACTORD.				
	Flexure reduction factor	= 1	.00			
	Flexure reduction factor	= 1	.00			
	Flexure reduction factor Shear reduction factor	= 1 = 1 = 1	.00			
STRES	Flexure reduction factor Shear reduction factor Concrete resistance factor	= 1 = 1 = 1	.00			
STRES	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK:	= 1 = 1 = 1 = 1	.00 .00 .00			
STRES	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor	= 1 = 1 = 1 = 1	.00 .00 .00			
STRES	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete stree	= 1 = 1 = 1 = 1 ngth = 0 olock = 0	.00 .00 .00			
	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete stren Ratio of depth of compression b Maximum concrete strain	= 1 = 1 = 1 = 1 olock = 0 = 0	.00 .00 .00 .8500 .7900			
MAT	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete strea Ratio of depth of compression b Maximum concrete strain CERIAL PROPERTIE	= 1 = 1 = 1 = 1 = 1 olock = 0 = 0	.00 .00 .00 .8500 .7900 .0030			
MAT	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete stren Ratio of depth of compression b Maximum concrete strain	= 1 = 1 = 1 = 1 = 1 olock = 0 = 0	.00 .00 .00 .8500 .7900 .0030			
MAT	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete strea Ratio of depth of compression b Maximum concrete strain CERIAL PROPERTIE	= 1 = 1 = 1 = 1 = 1 olock = 0 = 0	.00 .00 .00 .8500 .7900 .0030			
MAT	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete stren Ratio of depth of compression Maximum concrete strain CERIAL PROPERTIE	= 1 = 1 = 1 = 1 = 1 olock = 0 = 0 S =============================	.00 .00 .00 .8500 .7900 .0030			
MAT	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete stren Ratio of depth of compression Maximum concrete strain C E R I A L P R O P E R T I E Concrete compressive strength Concrete modulus of elasticity Concrete modulus of rupture	= 1 = 1 = 1 = 1 = 1 = 1 = 1 = 0 olock = 0 = 0 S =============================	.00 .00 .00 .00 .7900 .0030 ======= 200 .1502E+06 47.3			
MAT	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete stree Ratio of depth of compression b Maximum concrete strain C E R I A L P R O P E R T I E Concrete compressive strength Concrete modulus of elasticity Concrete modulus of rupture Reinforcing yield strength	= 1 = 1 = 1 = 1 = 1 = 1 = 1 S = 0 S = 52 = 4 = 54 = 54 = 68	.00 .00 .00 .00 .7900 .0030 ======= 200 .1502E+06 47.3 3000			
MAT	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete stree Ratio of depth of compression b Maximum concrete strain C E R I A L P R O P E R T I E Concrete compressive strength Concrete modulus of elasticity Concrete modulus of rupture Reinforcing yield strength Reinforcing modulus of elasticity	= 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	.00 .00 .00 .00 .7900 .0030 ======= 200 .1502E+06 47.3 3000 .9000E+07			
MAT	Flexure reduction factor Shear reduction factor Concrete resistance factor Reinforcing resistance factor SS BLOCK: Ratio of average concrete stree Ratio of depth of compression b Maximum concrete strain C E R I A L P R O P E R T I E Concrete compressive strength Concrete modulus of elasticity Concrete modulus of rupture Reinforcing yield strength	= 1 = 1 = 1 = 1 = 1 = 1 = 1 = 0 = 0 S = = 52 = 4 = 54 = 54 = 54 = 54 = 54 = 54 = 54	.00 .00 .00 .00 .7900 .0030 ======= 200 .1502E+06 47.3 3000 .9000E+07			

		SHEET)F		
TLE BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	date10/31/2007	
b .	CALCULATION No.	REVIEWER		DATE		
F	REINFORCING STEEL					
	Tensile reinf area = 1					
	Depth to tensile reinf = 42 Compressive reinf area = 0					
	Depth to compressive reinf = 0					
	Shear reinf area = 0.6	2				
	Shear reinf spacing = 12					
Ι	DESIGN LOADS					
=		=======	======			
	Factored (ultimate) moment = 23	5				
	Maximum service load moment = 0					
	Minimum service load moment = 0	2				
	Factored (ultimate) shear = 53	.3				
Ċ,	SECTION PROPERTIES					
=		======	======			
I	RECTANGULAR SECTION:					
	Width = 12					
	Height = 48					
т						
1	PROPERTIES:					
	Gross moment of inertia = 1.					
	Gross section modulus = 4.					
	Distance to neutral axis = 2. Cracked moment of inertia = 9.	4000E+0. 9200E+0.				
	MOMENT REVIEW CALCU					
-						
ľ	MINIMUM REINFORCING:					
	1.2 * Cracking moment = 2.5	220E+02				
	Design moment = 2.5					
ľ	MAXIMUM REINFORCING:					
		639E-02 000E-01				
		OOOF OI				
ľ	MOMENT CAPABILITY:					
	Ultimate moment capability = 2.	3437E+0	2 ≅ 235 Okay			
	Stress block depth = 1.					

			SHEET	5-29 OF	
le <u>BE</u>	BENT DESIGN		ORIGINATOR	Bob Matthews	date 10/31/200
	CALCULATION No.		REVIEWER		DATE
SН	EAR REVIEW CAL	CUL	ATI(O N S	
===:		======	=======	======	
CON	CRETE SHEAR CAPABILITY:				
	Effective shear depth				
	Concrete shear strength				
	Longitudinal strain				
			400E+01 300E+00		
SHE	AR REINFORCING:				
	Min shear reinf area	- 1 5	271〒_01		
	Max shear reinf spacing	= 1.5 = 2.4	271E-01 000E+01		
	Shear reinf strength	= 1.9	709E+02	> E2 2 Olrorr	
	Ultimate shear capability Maximum shear capability	= 2.7	690E+02	> 53.3 Okay	
MIN	IMUM LONGITUDINAL TENSILE RE	INFORC	ING:		
	Minimum reinf area	= 1.5	343E+00		

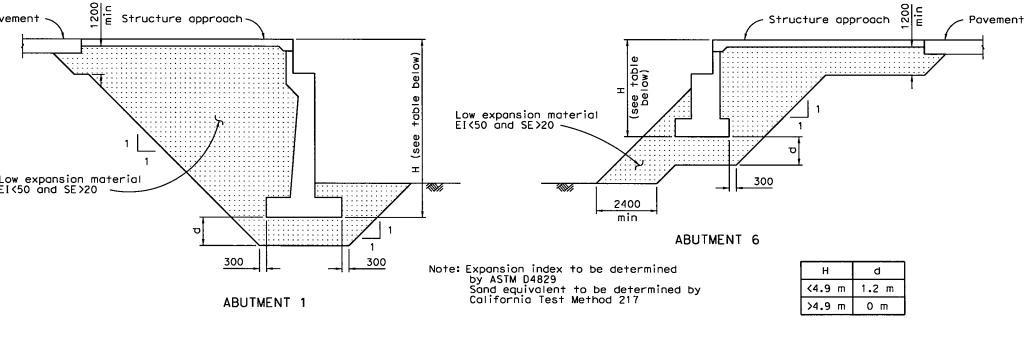

		sheet 5-30 of					
JOB TITLE	BENT DESIGN	ORIGINATOR	Bob Matthews	DATE	10/31/2007		
JOB No.	CALCULATION No.	REVIEWER		DATE			
							
•	Footing two-way shear capacity (LRFD 5.13.3.6	.3)					
	For sections without transverse reinforcement:						
	$V_n = [0.063 + 0.126 \ / \ \beta_c] (f'_c)^{1/2} \ x \ b_o d_v \leq 0.7$	126(f' _c) ^{1/2} x	t b _o d _v				
	b_o = Perimeter of the critical sect β_c = Ratio of long to short side of d_v = 0.9 x 42 = 37.8"						
	For column pin =>						
	P _f = 1443 kips (STR-IIA)	1					
	$b_o = 3.1416 \times (25.6 + 37)$ $\phi V_n = 0.9 \times 0.126 (f'_c)^{1/2} \times 10^{1/2} $		n ^² 06 kips > 1443 kips Okay	/			
	For pile =>						
	$P_f = 251 \text{ kips} (STR-IIA)$						
	$b_o = 4 \times (14 + 37.8) = 20$ $\phi V_n = 0.9 \times 0.126(f'_c)^{1/2} \times 10^{1/2}$		75 kips > 251 kips Okay				
•	Pile dowel embedment in footing is based on LF	₹FD 5 and	Caltrans Amendments				
	ϕ = 1.0 (Caltrans Amendments 5.5.5)						
	Epoxy control Bottom of foc	at 4 ed)					
	ELEVATION						
	PLAN						
	$P_f = -180$ kips (seismic) Rebar tension capacity = 8 x 0.79 x 60 c Rebar shear capacity = 4 x 0.8 x 0.48 x 8 Development L _{db} > 1.25A _b f _y /(f' _c) ^{1/2} = 1.25	80 x 0.79 x	(2 = 194 > 180 Okay (LRF	D 6.1	3.2.7)		

			SHEET	5-31 _{0F}	
B TITLE	BENT DESIGN		ORIGINATOR	Bob Matthews	date 10/31/2007
3 No.		CALCULATION No.	REVIEWER		DATE
5 5					
<u>5.5</u>	<u> PILES</u>				
٠	Several program	is are available to perform lat	eral pile anal	ysis/design as shown	below.
	Program	Description			
-	LPILE GROUP	Lateral single pile analys Lateral pile group analys			
L	GROOF		013		
		d that the geotechnical engine n soil failure and movement	eer has provi	ded the vertical and la	iteral capability of
	P _{service} = V _{service} =	140 kips / -100 kips 10 kips			
	P _{ultimate} = V _{ultimate} =	280 kips/-200 kips 30 kips			
•	Pile capacity for	non-seismic loads is based c	on 10.5.5.2.3	with Caltrans Amendr	ments 10.5.5.2.3
	Axial compressio	n:			
	Service:	140 kips > 133 kips Okay			
	Strength:				
		Reduction factor = 0.7 (Caltra P = 0.7 x 280 = 196 kips < 2			apacity or numbers)
	Axial tension:				
		n factor = 1.0 (Caltrans Amer x 200 = 200 kips > 180 kips 0		5 for seismic)	
	Lateral:				
	Service:	$((0.3)^2 + (6.7)^2)^{1/2} = 6.7$ kips <	: 10 kips Oka	У	
	Strength:				
		Reduction factor = 1.0 (Caltra V = 1.0 x 30 = 30 kips > 23 k		ents 5.5.5 for seismic)	
•	Pile capacity for	structural strength is okay by	inspection		
	Structural strengt	h does not usually control for	steel H-piles	5	
	-	-	-		


			SHEET	6-1 оғ		
JOB TITLE	BENT DESIGN		ORIGINATOR	Bob Matthews	DATE	10/22/2007
JOB No.		CALCULATION No.	REVIEWER		DATE	

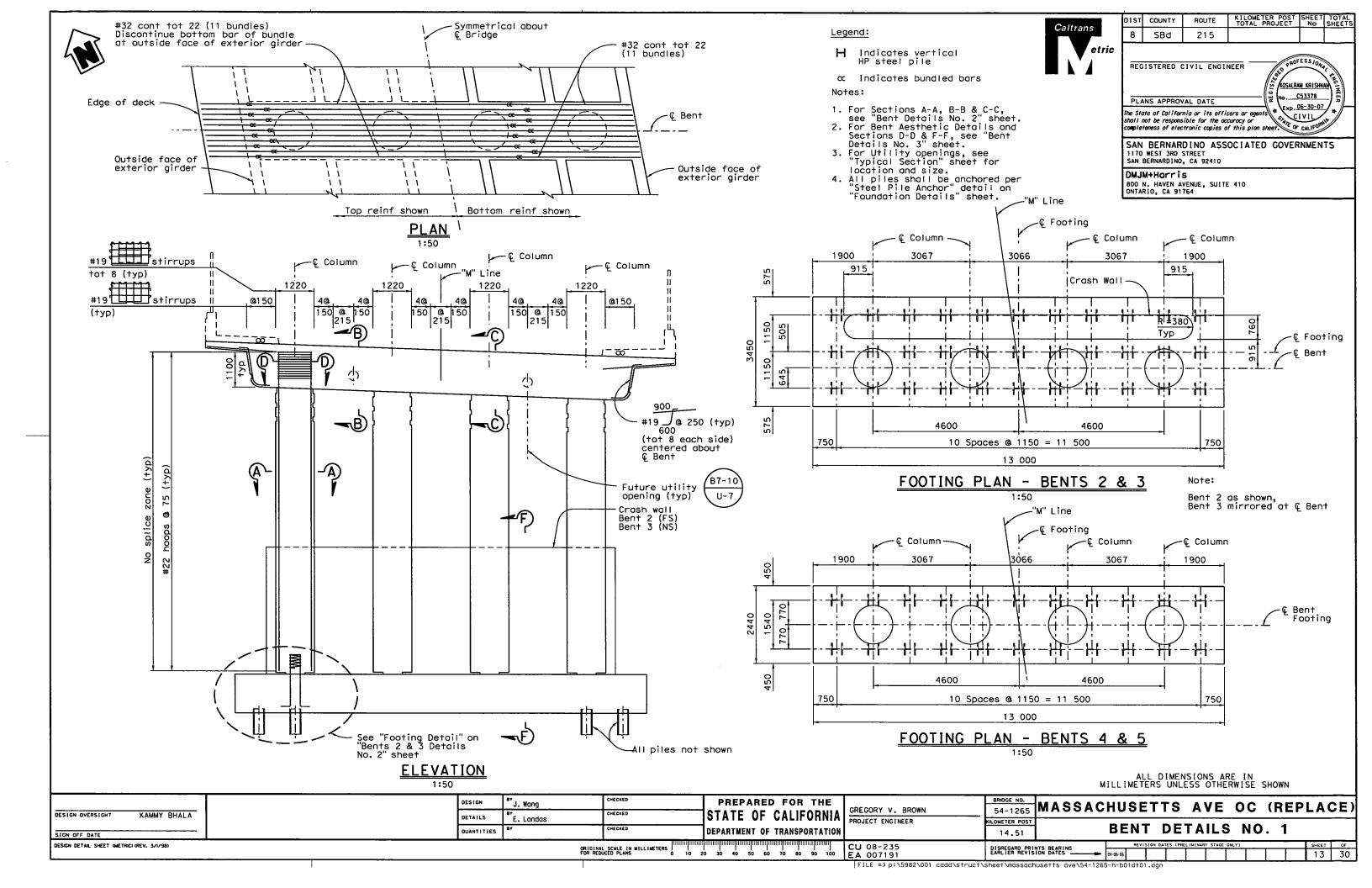
SECTION 6.0 DETAILING

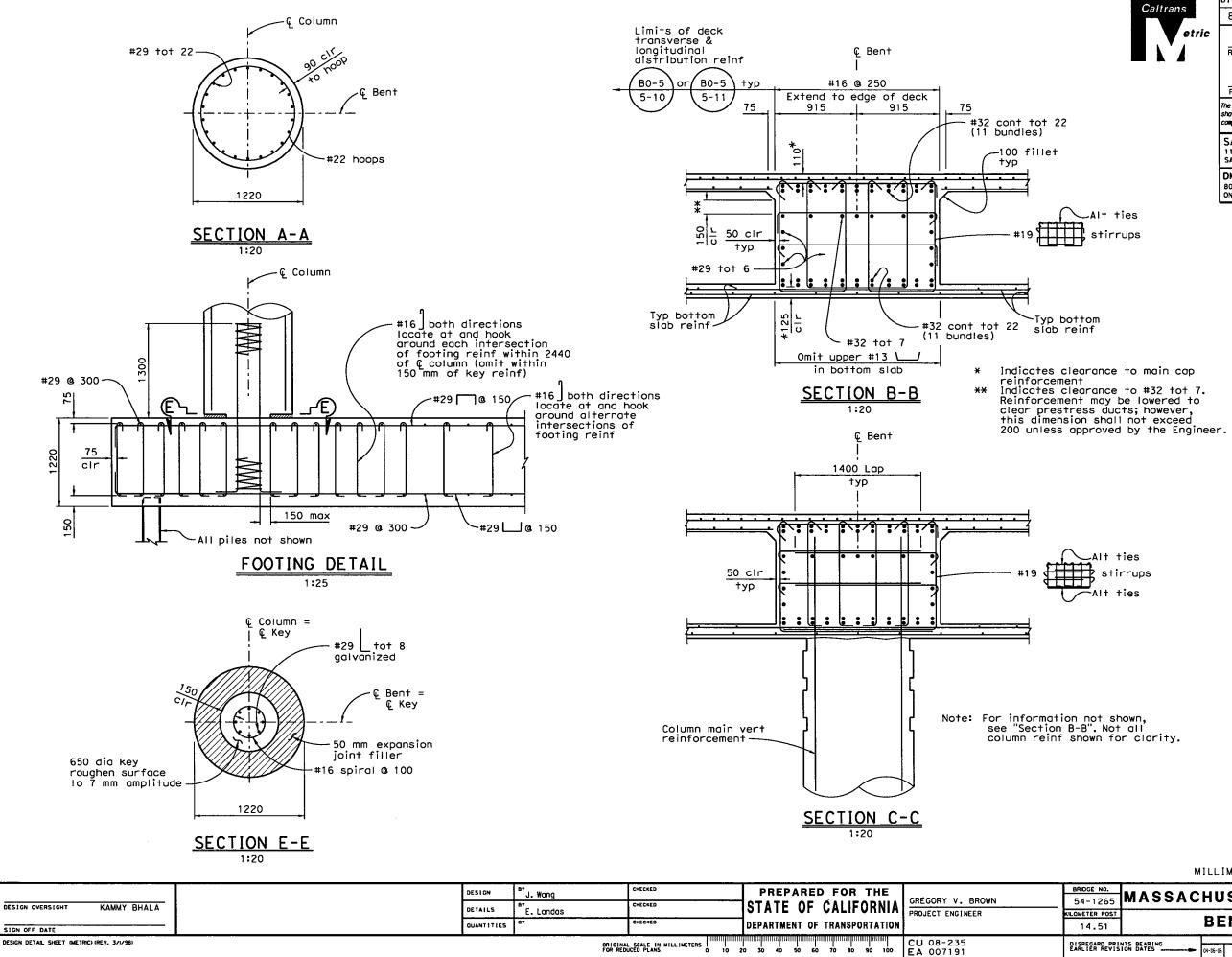
The bent details are shown on the following sheets


FILE => p:\5982\001 cadd\struct\sheet\massachusetts ave\54-1265-e-fp101.dg

PILE DATA TABLE

LOCATION		DESIGN	NOMINAL RE	SISTANCE	DESIGN	SPECIFIED
LUCATION	PILE TYPE	LOADING	COMPRESSION	TENSION	TIP ELEVATION	TIP ELEVATION
ABUT 1	HP 360 × 132	625 kN	1250 KN	600 KN	+340.0 (1), +340.5 (2), +344.0 (3)	+340.0
BENT 2	HP 360 x 132	625 KN	1250 kN	550 KN	+340.0 (1), +340.5 (2), +344.0 (3)	+340.0
BENT 3	HP 360 × 132	625 kN	1250 kN	550 KN	+340.0 (1), +340.5 (2), +344.0 (3)	+340.0
BENT 4	HP 360 × 132	625 kN	1250 kN	550 kN	+340.0 (1), +340.5 (2), +344.0 (3)	+340.0
BENT 5	HP 360 × 132	625 kN	1250 kN	550 kN	+340.0 (1), +340.5 (2), +344.0 (3)	+340.0
ABUT 6	HP 360 x 132	625 KN	1250 KN	600 KN	+342.0 (1), +342.5 (2), +348.0 (3)	+342.0


Design tip elevation is controlled by the following demands: (1) Compression; (2) Tension; (3) Lateral Loads

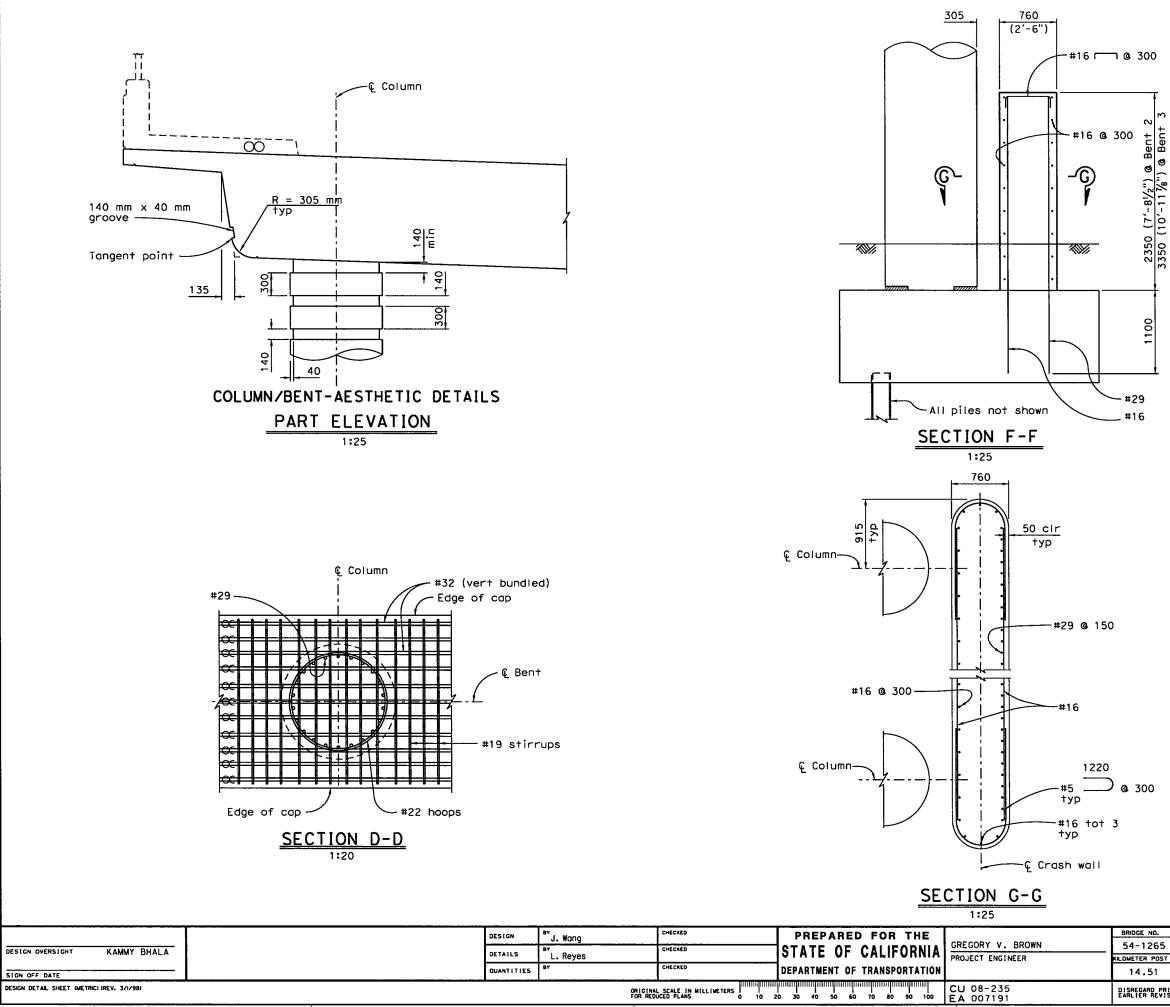


	LOW	EXPANSION MA	TERIAL IN BRIDGE EMBAN	<u>IKMENI</u>	ALL DIMENSIONS ARE IN
			No Scale		ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE SHOWN
	DESIGN BY K. Krishnan	CHECKED	PREPARED FOR THE	BRIDGE NO.	MASSACHUSETTS AVE OC (REPLACI
SIGN OVERSIGHT KAMMY BHALA	DETAILS T. Doung	CHECKED	STATE OF CALIFORNIA	SINEER SILOWETER POST	
IGN OFF DATE	QUANTITIES BY	CHECKED	DEPARTMENT OF TRANSPORTATION	14.51	FOUNDATION DETAILS
ESIGN DETAR, SHEET DAETRICI (REV. 3/1/98)		ORIGINAL SCALE IN MILLIMETERS I I FOR REDUCED PLANS 0 10	20 30 40 50 60 70 80 30 100 EA 0071		S BEARING REVISION DATES (PRELIMINARY STAGE ONLY) SHEET

Caltrans	dist 8	COUNTY SBd	ROUTE 215	KILOMETER POST TOTAL PROJECT	SHEET No	TOTAL SHEETS				
etric	REGISTERED CIVIL ENGINEER									
	SAN BERNARDINO ASSOCIATED GOVERNMENTS 1170 WEST 3RD STREET SAN BERNARDINO, CA 92410									
	DMJM+Horris 800 N. HAVEN AVENUE, SUITE 410 ONTARIO, CA 91764									

Н	d		
9 m	1.2 m		
9 m	0 m		

FILE => p:\5982\001 codd\struct\sheet\m


Caltrans	DIST	COUNTY	ROUTE	KILOMETER POST TOTAL PROJECT	SHEET NO	TOTAL SHEETS				
Caltrans	8 SBd 215									
etric	REGISTERED CIVIL ENGINEER									
	SAN BERNARDINO ASSOCIATED GOVERNMEN 1170 WEST 3RD STREET SAN BERNARDINO, CA 92410									
	DMJM+Horris 800 N. HAVEN AVENUE, SUITE 410 ONTARIO, CA 91764									
	•									

∕Alt ties

stirrups

Alt ties stirrups Alt ties

ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE SHOWN										
E NO.			0	TO		00	(D)			
1265	MASSAC	HU	SE I	15	AVE	00	(KI	PLA	CE /	
.51		BE	NT	DE	TAIL	S NC). 2			
	NTS BEARING		REVISION	DATES (PRE	LININARY STAG	E ONLY)		SHEET	OF	
R REVIS	ION DATES	04-05-06						14	30	
massach	usetts ave\54-126	5-h-b(01d†02.d	Ign						

FILE => p:\5982\001 cadd\struct\sheet\

		1							
	Caltrans	DIST	COUNTY	ROUTE	KILOMETER POST TOTAL PROJECT	SHEET NO	TOTAL SHEETS		
	Canrans	8	SBd	215					
ent 2 000 Bent 3 000	etric	REGISTERED CIVIL ENGINEER							
) @ Bent ") @ Ben		1170	WEST 3RD		OCIATED GOVER	NMEN	TS		
<u>'-8'/2")</u> '-11 <u>/</u> 8'		800	M+Horri N. HAVEN A RIO, CA 91	VENUE, SUITE	410				
10[]		•							

ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE SHOWN									
<u>ge no.</u> -1265	MASSAC	HU	SET	TS	AVE	oc	(REF	LAC	CE)
ter post 4.51		BE	NT	DE.	TAILS	NO	. 3		
EGARD PRI	NTS BEARING		REVISION	DATES (PRE	LIMINARY STAGE	ONLY]		SHEET	OF
IER REVIS	ION DATES	04-05-05						15	_30
\massach	usetts ave\54-126	5-h-b0	1d+03.d	gn					